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Abstract

Büchi, Elgot and Trakhtenbrot provided a seminal connection between monadic
second-order logic and finite automata for both finite and infinite words. This BET-
Theorem has been extended by Lautemann, Schwentick and Thérien to context-free
languages by introducing a monadic second-order logic with an additional existentially
quantified second-order variable. This new variable models the stack of pushdown au-
tomata. A fundamental study by Cohen and Gold extended the context-free languages
to infinite words. Our first main result is a second-order logic in the sense of Lautemann,
Schwentick and Thérien with the same expressive power as ω-context-free languages.
For our argument, we investigate Greibach normal forms of ω-context-free grammars
as well as a new type of Büchi pushdown automata, the simple pushdown automata.
Simple pushdown automata do not use ε-transitions and can change the stack only
by at most one symbol. We show that simple pushdown automata of infinite words
suffice to accept all ω-context-free languages. This enables us to use Büchi-type results
recently developed for infinite nested words.

In weighted automata theory, many classical results on formal languages have been
extended into a quantitative setting. Weighted context-free languages of finite words
trace back already to Chomsky and Schützenberger. Their work has been extended to
infinite words by Ésik and Kuich. As in the theory of formal grammars, these weighted
ω-context-free languages, or ω-algebraic series, can be represented as solutions of
mixed ω-algebraic systems of equations and by weighted ω-pushdown automata.

In our second main result, we show that (mixed) ω-algebraic systems can be trans-
formed into Greibach normal form.

We then investigate simple pushdown automata in the weighted setting. Here, we
give our third main result. We prove that weighted simple pushdown automata of finite
words recognize all weighted context-free languages, i.e., generate all algebraic series.
Then, we show that weighted simple ω-pushdown automata generate all ω-algebraic
series. This latter result uses the former result together with the Greibach normal form
that we developed for ω-algebraic systems.

As a fourth main result, we prove that for weighted simple ω-pushdown automata,
Büchi-acceptance and Muller-acceptance are expressively equivalent.

In our fifth main result, we derive a Nivat-like theorem for weighted simple ω-
pushdown automata. This theorem states that the behaviors of our automata are
precisely the projections of very simple ω-series restricted to ω-context-free languages.

The last result, our sixth main result, is a weighted logic with the same expressive
power as weighted simple ω-pushdown automata. To prove the equivalence, we use a
similar result for weighted nested ω-word automata and apply our present result of
expressive equivalence of Muller and Büchi acceptance.
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CHAPTER 1

Introduction

The aim of formal language theory is to understand and explain languages. This
thesis tries to give new insights into a class that has not been investigated until recently.
Only in 2004, Ésik and Kuich introduced weighted context-free languages of infinite
words, i.e., ω-words (see Ésik and Kuich, 2007a, for a survey). They investigated
weighted ω-context-free grammars called ω-algebraic systems. Droste, Ésik and Kuich
(2017) and Droste and Kuich (2017) continued this research by investigating weighted
ω-pushdown automata.

In this thesis, we give a logical characterization of weighted ω-context-free languages
and therefore complete the trinity of formalisms for this language class: grammar, au-
tomaton and logic. The intermediate steps to the weighted logic may be of independent
interest: We give a logical characterization of unweighted ω-context-free languages
first. Then we establish a new normal form for pushdown automata: simple pushdown
automata. Simple pushdown automata do not use ε-transitions and can change the
stack only by at most one symbol. We compare and relate simple pushdown automata
to context-free languages and specifically to the Greibach normal form of context-free
grammars. This relation is investigated for infinite words in the unweighted case and
for finite and infinite words in the weighted case. For weighted ω-algebraic systems,
we first show the existence of the Greibach normal form.

Figure 1.1 gives an overview of the contributions in this thesis. It shows different
extensions and generalizations of regular languages on its three axes: infinite words on
the x-axis, context-free languages on the y-axis and weighted languages on the z-axis.
Topics colored in burgundy are new in this thesis. As summarized in the figure, this
thesis extends major contributions in the field (in green). We will give more details
about related work in the following subsections.

1.1 Context-Free Languages

This thesis focuses on context-free languages. Chomsky (1959) classified the context-
free languages as class 2 in the so-called “Chomsky hierarchy” (see Figure 1.2). Context-
free languages are the basis for programming languages (e.g., see compiler construction,
Aho, Sethi and Ullman, 1986; Waite and Goos, 1984; Wirth, 1996). Furthermore, many
data structures are context-free because context-free languages can match opening and
closing brackets and therefore describe tree-like structures. For example, arithmetic ex-
pressions and the Extensible Markup Language (XML) can be described by context-free
grammars. Pushdown automata and context-free grammars are the most prominent
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Cohen, Gold 1977
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Chomsky, Schützenberger 1963
Weighted Simple Pushdown Automata

Droste, Ésik, Kuich 2017
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2005

Figure 1.1: Overview: Extensions and generalizations of regular languages on three
axes: languages of infinite words, context-free languages and weighted languages.
In green: Major contributions in the intersection of multiple extensions.
In burgundy: Contributions of this thesis.

examples of formalisms to describe exactly the class of context-free languages.
A major application of the theory of regular formal languages is model checking of

software and hardware systems. Model checking plays an important role in software
verification to review programs and to seek for mistakes (see McMillan, 1993; Baier
and Katoen, 2008; Clarke et al., 2016, for background). The input of the model checking
problem is the model, i.e., an abstraction of the software (or hardware) system, and
a specification. The model checking problem then asks whether the system satisfies
the specification. Both, the model and the specification must be effectively given. In
general, the model will be given in the form of a Büchi automaton and the specification
as a logical formula.

A seminal contribution to the fundamentals of model checking is the work of Büchi
(1960), Elgot (1961) and Trakhtenbrot (1961). Their famous BET-Theorem provides the
connection between finite automata and monadic second-order logic for finite words. It
was extended to various other structures, like infinite words (Büchi, 1966, see also next
section), finite trees (Thatcher and Wright, 1968), finite pictures (Giammarresi et al.,
1996), finite and infinite nested words (Alur and Madhusudan, 2009), and context-free
languages (Lautemann, Schwentick and Thérien, 1994).

Most common model checking algorithms work on regular models and regular spec-
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Figure 1.2: Chomsky hierarchy

ifications. But this is not always sufficient. Functional and procedural programming
use function calls and even recursion; both cannot be described by regular languages,
but they could be described by context-free languages. On the other hand, the use of
context-free languages for both the model and its specification raises another problem:
context-free languages are not closed under intersection. A compromise is to use either
a context-free model or a context-free specification and restrict the other input to regular
languages. For example, Esparza et al. (2000) describe how to check for reachability in
context-free systems. Another solution is the restriction to subclasses of context-free
languages. Examples of this are nested word languages or visibly pushdown languages
(Alur and Madhusudan, 2004, 2009) and CaRet (Alur, Etessami and Madhusudan,
2004). An important contribution to model checking of non-regular properties was
given by the BET-Theorem for context-free languages by Lautemann, Schwentick and
Thérien (1994). They presented a monadic second-order logic with one additional
existential dyadic first-order variable that describes exactly the context-free languages.

1.2 Infinite Words

In this thesis, we investigate mainly infinite words as input. Infinite strings mostly
occur in logics and model checking. In fact, temporal logics, such as LTL or CTL, argue
over time which is assumed to be infinite into the future (cf. Emerson, 1990, for a
survey) but also other program logics, e.g., dynamic logics, consider infinite traces
of programs (cf. Kozen and Tiuryn, 1990, for a survey). Similarly, model checking
can be used for checking interactive and background processes. As opposed to batch
processing (where programs calculate a result and then halt), many modern processes
either wait for the user or for other programs to interact with them. For instance, web
services and the Internet of things are two fields in which most processes only halt
exceptionally. In these cases, it makes sense to abstract from physical running time and
assume the program does not stop. Consequently, we have infinite runs of programs
and are dealing with their infinite traces. Sets of such traces are then called languages
of infinite words or ω-languages.

3



Chapter 1 Introduction

Automata of infinite words have been investigated to prove decidability of monadic
second-order logic with one successor (Büchi, 1966; McNaughton, 1966) and with two
successors (Rabin, 1969). Cohen and Gold (1977) extended ω-automata to the next
layer of the Chomsky hierarchy, ω-context-free languages. The ω-pushdown automata
behave similarly to their counterparts on finite words, but they are extended by a
Büchi or Muller acceptance condition. Büchi acceptance means that at least one state
of a designated set of states must occur infinitely often along an infinite run of the
automaton. Equivalently, ω-context-free languages can be described by ω-context-free
grammars. Cohen and Gold (1977) also developed fundamental results like closure
under Kleene-like ω-rational operations for instance. The first main contribution of
this thesis is a logic with the same expressive power as ω-context-free languages (see
Chapter 2). This logic extends the work of Lautemann, Schwentick and Thérien (1994)
to infinite words.

1.2.1 Simple Pushdown Automata

For the equivalence proof between logic and ω-context-free languages, we use a special
kind of ω-pushdown automaton that we call simple ω-pushdown automata. Simple
pushdown automata are realtime pushdown automata, i.e., without ε-transitions.
Additionally, the stack access is restricted to the top symbol, i.e., the automaton can
either pop that symbol, ignore the stack or push a new symbol. Read access to the
stack is not needed except when popping the top symbol. Finally, simple pushdown
automata start with an empty stack without the bottom of stack symbol.

For finite words, simple pushdown automata have already occurred hidden in a
proof by Blass and Gurevich (2006); they used simple automata (without calling them
in this way) to prove that general projections of regular nested word languages are
context-free. Apart from that, simple pushdown automata with clocks were utilized
by Droste and Perevoshchikov (2015a). Droste and Perevoshchikov do not discuss
any comparisons of their automaton model with more general pushdown automata.
They do, however, show a BET-Theorem for these automata. As they define a logic that
has similarities to the logic of Lautemann, Schwentick and Thérien (1994) and they
prove that this logic is equivalent to their automaton model, one could conclude that
their automaton model could all context-free languages. We present here a more direct
approach to prove this.

Otherwise, simple pushdown automata seem to have been overlooked although they
provide a very natural model and work already for finite words. Note that realtime
as well as stack-restricted pushdown automata have been considered in the literature
but their combination is non-trivial. We extend the result of Blass and Gurevich (2006)
and prove that simple ω-pushdown automata recognize all ω-context-free languages.
For the proof, we use ω-context-free grammars in Greibach normal form and convert
them directly into simple ω-pushdown automata. Alternatively, we show how we can
restrict the stack access if the ω-pushdown automaton is already realtime.

4



1.3 Weighted Languages

1.3 Weighted Languages

Traditional formal language theory investigates qualitative questions like: “Is the
word in the language or not?” In many cases, we also want to determine quantitative
properties. Quantitative languages or weighted languages relate words to resources such
as probabilities, costs, gains, energy consumption, consumption of other resources,
counts, transductions and even averages, optimal values or discountings of the above.
Depending on the question asked, one might consider different weight structures.
To abstract from the specific question, weight structures with similar properties are
clustered and investigated together. The most prominent investigated weight structures
are semirings. Semiring weighted automata multiply weights of transitions along the
run and add the weights of all runs to gain the weight of an input word. There exist
multiple variants like complete semirings, bimonoids or valuation monoids. Complete
semirings are semirings that allow infinite sums. Automata over valuation monoids
likewise sum up the weights of all possible runs but the multiplication is different;
the weights along the run are not consecutively multiplied but given as a sequence to
the valuation function. Valuation monoids include complete semirings but also allow
discounted and average behavior. They were first introduced by Droste and Meinecke
(2012) but their idea is based on Chatterjee, Doyen and Henzinger (2008). In this thesis,
we consider both, complete semirings and valuation monoids.

Additionally to possible weight structures, many language classes were generalized
to the weighted setting (e.g., regular, context-free, star-free languages). Even various
input structures were considered (like e.g., words, trees, pictures, nested words, infinite
words, etc.). See the books by Salomaa and Soittola (1978), Kuich and Salomaa (1986),
Ésik and Kuich (2007a) and Droste, Kuich and Vogler (2009) for an overview.

Weighted context-free languages already date back to the work of Chomsky and
Schützenberger (1963). The theory of weighted pushdown automata has been exten-
sively studied (see Kuich, 1997, for a survey). On the other hand, weighted languages
of infinite words were first considered by Ésik and Kuich (2005a,b)1. They investigated
weighted ω-regular languages first and then, Ésik and Kuich (2004) extended their
work to weighted ω-context-free languages. Current developments in the area are
given by e.g., Droste and Vogler (2014) who established a Chomsky-Schützenberger
type result for weighted pushdown automata. Droste and Perevoshchikov (2015b)
developed a weighted logic with the same expressive power as weighted pushdown
automata. For infinite words, weighted ω-pushdown automata were considered only
recently by Droste, Ésik and Kuich (2017) and Droste and Kuich (2017).

Important applications for weighted ω-languages are for instance probabilistic model
checking but also model checking with other quantitative questions. One might ask
whether some program always runs with less energy consumption (cf. e.g. Bouyer et al.,
2008) or whether it has an average cost below some threshold. In Chapter 5, we give an

1This was beforehand published as a technical report of the Technical University Vienna in 2003.
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example on how a basic web server and its average response time can be modeled by
a weighted ω-pushdown automaton. For model checking, it makes sense to consider
not only automata and grammars but more prominently logic. Therefore, since the
1960s, the BET-Theorem has been extended and generalized to multiple input structures
(like e.g., trees, pictures, nested words, infinite words, etc., see above, Section 1.1).
Droste and Gastin (2007) generalized the BET-Theorem to quantitative languages. They
opened a very new branch of research. The weighted BET-Theorem was extended to
algebraic power series by Mathissen (2008), to weighted languages of infinite words
(Droste and Rahonis, 2006; Droste and Gastin, 2009; Droste and Meinecke, 2012), to
weighted higher-order pushdown automata by Vogler, Droste and Herrmann (2016),
and to weighted timed pushdown automata by Droste and Perevoshchikov (2015b).
See Droste, Kuich and Vogler (2009) for an overview.

The final goal of the thesis is the extension of our first main result to the weighted
setting, i.e., to find a weighted logic for weighted ω-context-free languages. To reach
this goal, we use a similar way as discussed before for the unweighted case. Only, for
the weighted case, much more groundwork has to be laid. In fact, some open problems
remain (see Chapter 6, page 122, for details). As the second main result, we develop a
new normal form for weighted ω-context-free grammars, i.e., for ω-algebraic systems,
namely the Greibach normal form (see Chapter 3). Besides the Chomsky normal form,
the normal form invented by Greibach (1965) is the most well-known normal form for
context-free languages. The Greibach normal form is usually used for the construction
of realtime, i.e., ε-free pushdown automata (cf. e.g. Kuich and Salomaa, 1986). The
proof that ω-algebraic systems can be transformed into Greibach normal form is given
in Chapter 3.

As our third main result, we define weighted simple ω-pushdown automata and
prove that they recognize all weighted ω-context-free languages (see Chapter 4). As a
subresult, we also solve this case for languages of finite words, i.e., weighted simple
pushdown automata recognize all weighted context-free languages. This generalizes
the corresponding result of Chapter 2 from the unweighted to the weighted case. The
generalization shows that the basic model is very natural. Both, the result on the
Greibach normal form and the result on weighted simple ω-pushdown automata use
complete semirings as weight structure because algebraic systems heavily rely on
distributivity. For the Greibach normal form, we have to assume that the semiring is
additionally commutative.

For the rest of this thesis, we consider ω-valuation monoids. This is a valuation
monoid that processes infinite sequences that naturally occur in the context of infinite
words. As ω-valuation monoids are a generalization of complete semirings, one can
easily combine the following with the preceding results when restricting the weight
structure to complete semirings. Our fourth main result is the expressive equivalence
of Büchi and Muller acceptance for weighted simple ω-pushdown automata over
ω-valuation monoids.

6



1.4 Structure of This Thesis

As a fifth main result, we show a Nivat-like theorem for weighted simple ω-pushdown
automata over ω-valuation monoids. This theorem states that the weighted languages
recognized by weighted simple ω-pushdown automata are induced by an unweighted
ω-context-free language and a very simple weighted finite automaton with only one
state; the two components can be intersected and a projection of this intersection gives
us the original language. Such a theorem was first given by Nivat (1968) for rational
transductions. Nivat hereby showed how to combine a rational language together with
homomorphisms and inverse homomorphisms into a rational transducer. Droste and
Kuske (to appear) extended Nivat’s theorem to weighted automata of finite words
over semirings.

The sixth main contribution of this thesis is a BET-Theorem for weighted simple ω-
pushdown automata (see Chapter 5). This generalizes the BET-Theorem for unweighted
ω-context-free languages that is also newly given in this thesis (Chapter 2), and this
extends the BET-Theorem for context-free languages of Lautemann, Schwentick and
Thérien (1994) and the BET-Theorem for weighted regular ω-languages (Droste and
Rahonis, 2006; Ésik and Kuich, 2004) and the BET-Theorem for weighted nested ω-
words (Droste and Dück, 2017). We will be using ω-valuation monoids for our logical
characterization.

1.4 Structure of This Thesis

After the introduction, we show a logical characterization of unweighted context-free
languages of infinite words in Chapter 2. An overview over this chapter is given in
Figure 1.3; in the following, the connections depicted in the figure are discussed in more
detail. The chapter introduces ω-context-free grammars. It gives a detailed proof of
the existence of the Greibach normal form for ω-context-free grammars (the proof idea
was already given in Cohen and Gold, 1977). Then we introduce simple ω-pushdown
automata and prove that they recognize all ω-context-free languages. The chapter
also gives an insight into simple pushdown automata of finite words, and we explain
how to convert ω-pushdown automata that are already realtime, i.e., that have no
ε-transitions, into simple ω-pushdown automata. After the excursion, we present the
matching ω-logic. To prove its expressive equivalence with ω-context-free languages, we
use a corresponding result on nested ω-words. Therefore, we recall known results from
Alur and Madhusudan (2004) on visibly pushdown ω-languages. Here, we present a
projection from nested ω-word languages to ω-context-free languages that is new for
infinite words but is similar to an idea of Blass and Gurevich (2006) for finite words.
Then we finally prove the BET-theorem for ω-context-free languages.

The subsequent chapters are devoted to a similar result for weighted ω-context-free
languages. Figure 1.4 gives an overview. Results on the Greibach normal form and
results on simple pushdown automata have been moved to their own chapter. Open
problems are indicated by dashed blue arrows; see Chapter 6, page 122, for details.
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Figure 1.3: Overview Chapter 2: Logics for unweighted ω-context-free languages.
In burgundy: New contributions of this thesis.

Chapter 3 proves that ω-algebraic systems can be transformed into Greibach normal
form; ω-algebraic systems are basically systems of equations that generalize ω-context-
free grammars. We will be using continuous star-omega semirings and sometimes even
commutative semirings as a weight structure in this chapter. The chapter gives many
preliminaries on complete and continuous semirings as well as semiring-semimodule
pairs; the preliminaries will also be used in the subsequent chapter. First, we give a
simple but important theorem on ω-powers of matrices considering Büchi-acceptance.
Then, we introduce ω-algebraic systems together with mixed ω-algebraic systems. We
use an existing result on the ω-Kleene closure for weighted context-free languages to
build a mixed ω-algebraic system in Greibach normal form for every ω-algebraic series.
Furthermore, as the main result of this chapter, we show how to extend this result from
mixed ω-algebraic systems to ω-algebraic systems.

Weighted simple pushdown automata are discussed in great depth in Chapter 4.
The chapter is divided in two parts, the first one focuses on finite words, the second
on infinite words. As these automata specialize reset pushdown automata, they will
be called simple reset pushdown automata. We introduce reset pushdown matrices
and in particular, simple reset pushdown matrices. Many important basic results on
these matrices follow. Then, we define simple reset pushdown automata and present
a construction on how to construct these simple automata from algebraic systems in
Greibach normal form. The Greibach normal form for finite words can be gained
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1.4 Structure of This Thesis

ω-algebraic
series

ω-algebraic
systems

ω-algebraic systems
in Greibach
normal form

weighted
simple

ω-pushdown
automata

weighted
ω-pushdown

automata

projection of
weighted

ω-nested word
automata

weighted
matching
ω-logic

Muller-accepting
weighted

simple
ω-pushdown

automata

Figure 1.4: Overview Chapters 3 to 5: Logics for weighted ω-context-free languages.
In burgundy: New contributions of this thesis.
In dashed blue: The direction from weighted simple ω-pushdown automata to ω-
algebraic series is currently open. A weaker result is provided by Droste, Ésik and
Kuich (2017) (see Chapter 6, page 122, for details).

from an already existing result of Kuich and Salomaa (1986). We then prove that the
construction is correct and thus, every algebraic series is the behavior of a simple reset
pushdown automaton. We also present a small excursion on normal forms for algebraic
systems.

In the second part of Chapter 4, we continue with simple reset pushdown automata
of infinite words, the simple ω-reset pushdown automata. We first prove some results
on infinite applications of simple reset pushdown matrices. Then we introduce simple
ω-reset pushdown automata. Afterwards, we present an extension of the construction
that we used for finite words. This construction uses ω-algebraic systems in Greibach
normal form that can be gained from Chapter 3 and the construction is adapted to the
structure of mixed ω-algebraic systems. We show that we can apply the results from
the first part of the chapter. Then we investigate the canonical solutions of ω-algebraic
systems and prove that they are equal to the behaviors of our constructed simple
ω-reset pushdown automata.

Chapter 5 continues the work of Chapters 3 and 4 in the sense that it uses weighted
simple ω-pushdown automata and shows a logical characterization for these automata.
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Chapter 1 Introduction

However, we generalize the weight structure as we consider ω-valuation monoids
in this chapter. Our weight structure, the ω-valuation monoids, are described in the
chapter together with some of their properties. We then introduce weighted simple
ω-pushdown automata over ω-valuation monoids. We show how they relate to the
simple ω-reset pushdown automata in the preceding chapter. Our first main result of
this chapter is the expressive equivalence of Büchi and Muller acceptance for weighted
simple ω-pushdown automata. Then, we prove several closure properties for these
automata and a Nivat-like theorem. We present the weighted matching ω-logic. Fur-
thermore, we recall results of Droste and Dück (2017) on weighted nested ω-word
languages. The projection from weighted nested ω-word languages to weighted ω-
context-free languages uses our present result of expressive equivalence of Muller and
Büchi acceptance. Finally, we prove the expressive equivalence between the weighted
matching ω-logic and weighted simple ω-pushdown automata for various restrictions
on our logic. In this chapter, we include two examples on how we can model average
response times of a basic web server by a weighted simple ω-pushdown automaton
and by our weighted logic, respectively.

The last chapter, Chapter 6 summarizes our results and indicates possible future
work.

10



CHAPTER 2

Unweighted Context-Free ω-Languages

This chapter shows a BET-Theorem for unweighted context-free languages of infinite
words. Büchi (1960), Elgot (1961) and Trakhtenbrot (1961) proved that regular lan-
guages are exactly those languages definable by monadic-second-order logic. Here we
will generalize their result to context-free languages (like Lautemann, Schwentick and
Thérien, 1994) and extend it to infinite words (like Büchi, 1966).

For the following outline of the proof, please revert to Figure 1.3. Recall that in
formal language theory, grammars in Greibach normal forms are of basic importance
for context-free languages of finite words. Here, we will first use a Kleene-type result
of Cohen and Gold (1977) to show that each ω-context-free language has a Büchi-
accepting grammar in quadratic Greibach normal form. This enables us to show, as
our first main new result, that each ω-context-free language can be accepted by a
simple ω-pushdown automaton. A similar construction for context-free languages
of finite words occurred within an argument of Blass and Gurevich (2006). Simple
ω-pushdown automata are ω-pushdown automata without ε-transitions and with very
specific access to the stack; the simple ω-pushdown automaton can either push one
symbol, pop one symbol or ignore the stack altogether. As a technical difference to
usual pushdown automata, simple ω-pushdown automata start with an empty stack
and cannot read the top of the stack — except when popping it.

We show that the languages of simple pushdown automata are, in a natural way,
projections of visibly pushdown languages investigated by Alur and Madhusudan
(2004). Now we can use their expressive equivalence result for visibly pushdown
languages and monadic second-order logic to derive our second main result, the
logical description of ω-context-free languages. Since our proof is constructive and
the emptiness problem for ω-pushdown automata is decidable (cf. Lei et al., 2017),
we can also decide the emptiness of simple ω-pushdown automata and therefore the
satisfiability for our matching ω-logic.

The chapter is structured so that we first deal with ω-context-free grammars in
Greibach normal form in Section 2.1. Then we use those grammars in Section 2.2 for
our simple ω-pushdown automata. A small excursion (Section 2.3) investigates simple
pushdown automata also for finite words and constructs them if ε-transitions are
already non-existent. Our language-theoretic results for simple ω-pushdown automata
can be read independently of the rest of the chapter. Afterwards, in Section 2.4, we
define our second-order logic. We recall some results of visibly pushdown ω-languages
in Section 2.5 and then use them to prove our BET-Theorem in Section 2.6.

This chapter is based on Droste, Dziadek and Kuich (2020a).
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Chapter 2 Unweighted Context-Free ω-Languages

2.1 Greibach Normal Form

Let us first make two conventions for the entire thesis. An alphabet denotes a finite set
of symbols. The set N = {0, 1, 2, . . .} of natural numbers are the non-negative integers.

Now, let us recall some background. The concept of ω-context-free languages has
been defined by Cohen and Gold (1977) (for an overview cf. Thomas, 1990). They
are defined to be the languages generated by ω-context-free grammars with Muller-
acceptance condition (cf. Muller, 1963). It is shown that these languages coincide with
the class of languages recognized by general ω-pushdown automata, both for Büchi-
and Muller-acceptance condition.

The ω-context-free grammars are similar to context-free grammars for finite words
but we consider only infinite leftmost derivations and define both Büchi- and Muller-
acceptance conditions.

Definition 2.1 (Cohen and Gold, 1977). An ω-context-free grammar is a tuple G =

(N, Σ, P, S, F) where (N, Σ, P, S) is an ordinary context-free grammar for finite words
and F defines the acceptance condition: If G is Muller-accepting, we have F ⊆ 2N . If G
is Büchi-accepting, we have F ⊆ N.

Let δ : S → . . . be an infinite derivation of G. We write δ : S →ω
G w if w ∈ Σω is

the infinite word of terminals occurring in the production rules of δ. For i ≥ 0, let
δN(i) = Ai be the non-terminal which is the left-hand side of the rule applied in step i
of derivation δ. We define Inf(δ) =

{
A | A = Ai for infinitely many i ≥ 0

}
.

For a Muller-accepting ω-context-free grammar G, the language generated by G is
defined as

L(G) = {w ∈ Σω | ∃ leftmost derivation δ : S→ω
G w with Inf(δ) ∈ F} .

For Büchi-accepting ω-context-free grammars,
L(G) = {w ∈ Σω | ∃ leftmost derivation δ : S→ω

G w with Inf(δ) ∩ F 6= ∅} .

A language L ⊆ Σω is said to be an ω-context-free language if L = L(G) for a
Muller-accepting ω-context-free grammar G. H

Clearly, every Büchi-accepting ω-context-free grammar can be translated in a Muller-
accepting one. The inverse is not so easily seen.

Lemma 2.2 (Ésik and Iván, 2011). Every ω-context-free language is generated by a Büchi-
accepting ω-context-free grammar.

This has been shown by Ésik and Iván (2011) by using automata of countable words,
i.e., also words with multiple ω-operators are allowed. But it can be shown directly by
using a standard idea used already to translate Muller-automata into Büchi-automata
(cf. Cohen and Gold, 1977, Theorem 4.1.4). In the sequel, a stronger result will be
needed and is provided by Lemma 2.4 below.

For finite words, the following definition is standard, cf. Autebert, Berstel and Boasson
(1997) for an overview.
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2.1 Greibach Normal Form

Definition 2.3. An ω-context-free grammar G = (N, Σ, P, S, F) is in Greibach normal
form if P ⊆ N × ΣN∗. More specifically, G is in quadratic Greibach normal form if

P ⊆ N × (Σ ∪ ΣN ∪ ΣNN) . H

Note that this is the only chapter where we differentiate between the quadratic and
the more general Greibach normal form. In the subsequent chapters, we will only
consider the quadratic version and therefore denote it simply by Greibach normal form.

Lemma 2.4. Let L be an ω-context-free language. There exists a Büchi-accepting ω-context-free
grammar G in quadratic Greibach normal form with L(G) = L.

The idea of the proof is similar to the idea given by Cohen and Gold (1977, Theo-
rem 4.2.2), which shows that for Muller-accepting ω-context-free grammars one can
remove rules of the type A→ε. Cohen and Gold (1977) claim in Theorem 4.2.4 that
the same idea can be used to prove that for every ω-context-free language there exists
a Muller-accepting ω-context-free grammar in Greibach normal form. We show it here
for Büchi-acceptance and for the stricter quadratic Greibach normal form.

Proof. By Theorem 4.1.8 of Cohen and Gold (1977), L can be expressed as the Kleene-
closure of context-free languages of finite words, i.e., for some l ∈ N, there exist
context-free grammars Gi, G′i (1 ≤ i ≤ l) such that

L =
l⋃

i=1

L(Gi)L(G′i)ω .

For 1 ≤ i ≤ l, let Gi = (Ni, Σ, Pi, Si) and G′i = (N′i , Σ, P′i , S′i) and we assume all Ni and
N′i to be pairwise distinct. As the Gi and G′i are context-free grammars for finite words,
we can assume they are in quadratic Greibach normal form (cf. e.g. Autebert, Berstel
and Boasson, 1997, p. 16).

We construct the Büchi-accepting ω-context-free grammar G = (N, Σ, P, S, F) where
N = {S} ∪⋃l

i=1(Ni ∪ N′i ∪ {S̄i}) and F = {S̄i | 1 ≤ i ≤ l} as follows; here the symbols
S and S̄i are new symbols and are assumed to be neither in Ni nor in N′i . We define as
an intermediate step

Ptmp = {S→SiS̄i, S̄i→S′i S̄i | 1 ≤ i ≤ l} ∪
l⋃

i=1

(
Pi ∪ P′i

)
.

The grammar G with Ptmp as set of production rules accepts the language L but is
not yet in Greibach normal form. To achieve this, we first substitute Si and S′i with all
possible right-hand sides of their productions to obtain G in Greibach normal form:

P = {S→αS̄i, S̄i→α′S̄i | Si→α ∈ Pi, S′i→α′ ∈ P′i , 1 ≤ i ≤ l} ∪
l⋃

i=1

(
Pi ∪ P′i

)
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Chapter 2 Unweighted Context-Free ω-Languages

Unfortunately, α and α′ can already contain two non-terminals and therefore, G can
contain up to three non-terminals on the right-hand sides of its productions. Thus, G
is not yet in quadratic Greibach normal form.

The Büchi-acceptance condition and the definition of F ensure that for every word
accepted by G, one of the G′i is applied infinitely many times. Hence

L(G) =
l⋃

i=1

L(Gi)L(G′i)ω = L .

Now, we apply a standard algorithm (see e.g., Harrison, 1978, Theorem 4.7.1) to
convert P into quadratic Greibach normal form Ḡ = (N̄, Σ, P̄, S̄, F) with N̄ = N ∪ N ×
N and

P̄ =
l⋃

i=1

(Pi ∪ P′i )

∪ {S̄→αS̄i | Si→α ∈ Pi, |α| ≤ 2, 1 ≤ i ≤ l}
∪ {S̄→ aB(C, S̄i) | Si→ aBC ∈ Pi, 1 ≤ i ≤ l}
∪ {S̄i→αS̄i | S′i→α ∈ P′i , |α| ≤ 2, 1 ≤ i ≤ l}
∪ {S̄i→ aB(C, S̄i) | S′i→ aBC ∈ P′i , 1 ≤ i ≤ l}
∪ {(A, S̄i)→αS̄i | A→α ∈ Pi ∪ P′i , |α| ≤ 2, 1 ≤ i ≤ l}
∪ {(A, S̄i)→ aB(C, S̄i) | A→ aBC ∈ Pi ∪ P′i , 1 ≤ i ≤ l} .

The new non-terminals are pairs (A, B) with production rules that apply a production
rule of non-terminal A and add the non-terminal B to its right-hand side.

Technically, because the Gi and G′i are grammars for finite words, they could derive
the empty word ε. In this special case, whenever |α| = 0, we substitute in the above
construction αS̄i by all right-hand sides of productions for S̄i and we simply omit rules
S̄i→αS̄i.

This shortens the production rules to at most two non-terminals on the right-hand
side. As only an occurrence of the non-terminal S̄i in Ḡ implies an occurrence of S̄i in a
derivation of G, the set of Büchi states F is not changed. It follows that

L(Ḡ) = L(G) = L

and Ḡ is in quadratic Greibach normal form.

Note that the above construction for P̄ needs one case less than the original con-
struction by Harrison (1978, Theorem 4.7.1). In the original construction, there is a
special case, in which for (A, B) there is already a production rule for A with three
non-terminals on the right hand side. In P̄, such production rules only occur for S̄ and
for S̄i. But neither S̄ nor any of the S̄i occur in the first position of any pair (A, B).
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2.2 Simple ω-Pushdown Automata

Example 2.5. Let Σ = {a, b, c}, L1 = c+ and L′1 = {w ∈ {a, b}+ | |w|a = |w|b}. The
corresponding grammars are G1 = ({S1}, Σ, P1, S1) where P1 = {S1→ c | cS1} and
G′1 = (N′1, Σ, P′1, S′1) where N′1 = {S′1, M, N, A, B} and P′1 contains the rules

S′1→ aB | bA | aS′1B | bS′1A | aBS′1 | bAS′1 | aS′1M | bS′1N

M→bS′1
N→ aS′1
A→ a

B→b .

The corresponding grammar for L = L1L′ω1 is Ḡ = (N̄, Σ, P̄, S̄, F) with F = {S̄1} and P̄
contains the rules of P1, of P′1, and additionally

S̄→ cS̄1 | cS1S̄1

S̄1→ aBS̄1 | bAS̄1 | aS′1(B, S̄1) | bS′1(A, S̄1) | aB(S′1, S̄1) | bA(S′1, S̄1) |
aS′1(M, S̄1) | bS′1(N, S̄1)

(B, S̄1)→bS̄1

(A, S̄1)→ aS̄1

(S′1, S̄1)→ aBS̄1 | bAS̄1 | aS′1(B, S̄1) | bS′1(A, S̄1) | aB(S′1, S̄1) | bA(S′1, S̄1) |
aS′1(M, S̄1) | bS′1(N, S̄1)

(M, S̄1)→bS′1S̄1

(N, S̄1)→ aS′1S̄1 . O

2.2 Simple ω-Pushdown Automata

Common definitions of ω-pushdown automata (cf. e.g., Cohen and Gold, 1977) extend
pushdown automata of finite words by a set of Muller- or Büchi-accepting final states.
We do not directly work with this automaton definition because the equivalence proof
for this automaton and the logic we will define in Section 2.4 is not easily possible.

Instead, we propose another automaton model, the simple ω-pushdown automaton.
As Droste and Perevoshchikov (2015a), we restrict the access to the stack to only allow
either to keep the stack unaltered, to push one symbol or to pop one symbol. This
will later allow us to employ a simple translation from nested word automata to our
automaton model. We believe that this automaton model is also of independent interest.

In this section, we prove that the simple ω-pushdown automata recognize all ω-
context-free languages. This means that the restrictions in the automaton model do
not change the expressiveness of ω-pushdown automata. Even though this property
seems to be very basic, we could not find many results in the literature on this property.

For the case of finite words, Blass and Gurevich (2006) show how to translate nested-
word automata into pushdown automata and only use three stack commands for their
automata. As we borrowed the restrictions of our automaton model from nested-word
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Chapter 2 Unweighted Context-Free ω-Languages

automata, we use a similar strategy in the following to prove the expressive equivalence
also in the infinite case.

For an alphabet Γ, let S(Γ) = ({↓}× Γ)∪{#}∪ ({↑}× Γ) be the set of stack commands.

Definition 2.6. A simple ω-pushdown automaton (ωPDA) over the alphabet Σ denotes a
tuple M = (Q, Γ, T, I, F) where
• Q is a finite set of states,
• Γ is a finite stack alphabet,
• T ⊆ Q× Σ×Q× S(Γ) is a set of transitions,
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of (Büchi-accepting) final states. H

A configuration of an ωPDA M = (Q, Γ, T, I, F) is a pair (q, γ), where q ∈ Q and
γ ∈ Γ∗. We define the transition relation between configurations as follows. Let γ ∈ Γ∗

and t ∈ T. If t = (q, σ, q′, (↓, A)), we let (q, γ) `t
M (q′, Aγ). If t = (q, σ, q′, #), we put

(q, γ) `t
M (q′, γ). Finally, if t = (q, σ, q′, (↑, A)), we let (q, Aγ) `t

M (q′, γ). These three
types of transitions are called push, internal and pop transitions, respectively. Note that
the stack here grows to the left.

We denote by state(q, σ, q′, s) = q the state and by label(q, σ, q′, s) = σ the label
of a transition. Both will be extended to infinite sequence of transitions by letting
state((ti)i≥0) = (state(ti))i≥0 ∈ Qω for the infinite sequence of states and similarly
label((ti)i≥0) = (label(ti))i≥0 ∈ Σω for the infinite word constructed from the labels of
the transitions.

We call an infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T a run of M =

(Q, Γ, T, I, F) on w = label(ρ) iff there exists an infinite sequence of configurations
(qi, γi)i≥0 with q0 ∈ I and γ0 = ε such that (qi, γi) `ti

M (qi+1, γi+1) for each i ≥ 0.
For the sequence of states (qi)i≥0, let Inf((qi)i≥0) =

{
q | q = qi for infinitely

many i ≥ 0
}

. The run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅.

Definition 2.7. For an ωPDA M = (Q, Γ, T, I, F) over Σ, the language accepted by M is
denoted by L(M) = {w ∈ Σω | ∃ successful run of M on w}. A language L ⊆ Σω is
called ωPDA-recognizable if there exists an ωPDA M with L(M) = L. H

For clarity, we abbreviate a run ρ = (ti)i≥0 with (q0, γ0) `t0
M (q1, γ1) `t1

M · · · where
label(ti) = ai by ρ : (q0, γ0)

a0−→ (q1, γ1)
a1−→ · · · such that the word becomes visible.

Example 2.8. We define an example automaton A = (Q, {S, B}, T, S, {S}) over Σ =

{a, b} with Q = {S, M, B} and the transitions T as depicted in Fig. 2.1. In state M,
the automaton reads a and pushes B. For every B that is popped from the stack, the
automaton reads b. When there are no more B on the stack, S is remaining on the stack
and b brings the automaton to start from the beginning. As S is the only final state, we
have L(A) = {anbn | n ≥ 1}ω. O
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2.2 Simple ω-Pushdown Automata

S M

B

b, (↑, S)

a, (↓, S)

b, (↑, B)

a, (↓, B)

b, (↑, B)

b, (↑, S)

Figure 2.1: Example 2.8: Automaton

We call intermediate steps in a derivation δ : S→α1→α2→ . . . sentential forms. Thus,
the ith sentential form of δ is αi. Similarly, the ith configuration of a run ρ : γ0 ` γ1 ` . . .
is defined to be γi.

Clearly, every ωPDA-recognizable language is ω-context-free. We will now show
the inverse which will be the first main result of this chapter.

Theorem 2.9. Every ω-context-free language is ωPDA-recognizable.

Proof. Let L be an ω-context-free language. By Lemma 2.4, L is generated by some
Büchi-accepting ω-context-free grammar G = (N, Σ, P, S, F) in quadratic Greibach
normal form. We construct an ωPDA M = (Q, Γ, T, I, F) with Q = Γ = N, I = {S},
and

T ={(A, a, B, (↓, C)) | A→ aBC ∈ P} ∪ (2.1)
{(A, a, B, #) | A→ aB ∈ P} ∪ (2.2)
{(A, a, B, (↑, B)) | A→ a ∈ P, B ∈ N} (2.3)

for a ∈ Σ and A, B, C ∈ N.
Intuitively, the non-terminals in the grammar are simulated by states in the automa-

ton. The second non-terminal on the right side of the productions is pushed to the
stack to store it for later. Whenever a final production is processed (Equation (2.3)),
it is checked which non-terminal is waiting on the stack to be processed. The Büchi-
accepting final states of M are the same as in G. As the grammar only allows derivations
where non-terminals in F occur infinitely often, the automaton will only allow runs
where the same is true for states in F.

Claim: There exists a derivation δ : S → · · · → a1 . . . ai A1 . . . Aj → . . . of G if and
only if there exists a run ρ : (S, ε)

a1−→ . . .
ai−→ (A1, A2 . . . Aj)→ . . . of M, with i ≥ 0.

We prove the claim by an inductive construction of steps i in the derivation δ and in
the run ρ:

Let i = 0. Then the derivation δ : S is still in start state. As I = {S}, the start of the
corresponding run is ρ : (S, ε). The same argument holds for the other direction.

Let i > 0. We distinguish three cases:
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Chapter 2 Unweighted Context-Free ω-Languages

1. Let the ith rule be A→ ai. To get the sentential form a1 . . . ai A1 . . . Aj in the ith step,
the (i− 1)th sentential form has to be a1 . . . ai−1AA1 . . . Aj. Then, by induction
hypothesis, there exists the (i− 1)th configuration (A, A1 . . . Aj) in the run ρ.
By construction, there exists a transition (A, ai, A1, (↑, A1)) ∈ T. It follows that a
possible ith configuration is (A1, A2 . . . Aj) and the word read until then is a1 . . . ai.
The direction from run to derivation works similarly.

2. Let the ith rule be A→ ai A1. To get the ith sentential form as assumed in the claim,
the (i− 1)th sentential form has to be a1 . . . ai−1AA2 . . . Aj. Then, by induction
hypothesis, there exists the (i− 1)th configuration (A, A2 . . . Aj) in the run ρ.
By construction, there exists a transition (A, ai, A1, #) ∈ T. It follows that a
possible ith configuration is (A1, A2 . . . Aj) and the word read until then is a1 . . . ai.
The other direction works similarly.

3. Let the ith rule be A → ai A1A2. To get the ith sentential form as assumed in
the claim, the (i− 1)th sentential form has to be a1 . . . ai−1AA3 . . . Aj. Then, by
induction hypothesis, there exists the (i− 1)th configuration (A, A3 . . . Aj) in the
run ρ.
By construction, there exists a transition (A, ai, A1, (↓, A2)) ∈ T. It follows that a
possible ith configuration is (A1, A2 . . . Aj) and the word read until then is a1 . . . ai.
The other direction works similarly.

This proves the claim.

Let w = a1a2 . . . ∈ Σω. Now,

w ∈ L(M) iff ∃ run ρ of M on w and Inf(state(ρ)) ∩ F 6= ∅

iff ∃ run ρ : (S, ε)
a1−→ . . .

ai−→ (A1, A2 . . . Aj)→ . . . of M

and Inf(state(ρ)) ∩ F 6= ∅

iff ∃ derivation δ : S→ · · · → a1 . . . ai A1 . . . Aj → . . . of G

and Inf(δ) ∩ F 6= ∅

iff ∃ successful derivation δ of G on w

iff w ∈ L(G) .

The equivalence of the second and third line is due to the claim above.

Example 2.10. Let G = (N, Σ, P, S, F) be a Büchi-accepting ω-context-free grammar
with N = {S, M, B}, Σ = {a, b}, F = {S} and P contains the following rules:

S→ aMS

M→b | aMB

B→b

Then G is in quadratic Greibach normal form. Note that the non-terminal M derives
a string anbn+1 for n ∈N and the non-terminal S prepends another a. Thus, L(G) =
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{anbn | n ≥ 1}ω. By the construction of the proof of Theorem 2.9, G can be transformed
into the ωPDA of Example 2.8. Note that Equation (2.3) generates a rule for every
non-terminal in the grammar. As there are no transitions that push M on the stack, we
omit its pop-rule here. O

Now we summarize our results obtained so far.

Corollary 2.11. Let L ⊆ Σω. The following are equivalent:
(i) L is ωPDA-recognizable,

(ii) L is accepted by some ω-pushdown automaton,
(iii) L is contained in the ω-Kleene closure of context-free languages,
(iv) L is generated by some Muller-accepting ω-context-free grammar,
(v) L is generated by some Büchi-accepting ω-context-free grammar in quadratic Greibach

normal form.

Proof. The notions of ω-Kleene closure and general ω-pushdown automata were given
by Cohen and Gold (1977) (see also the ε-transition-free variant in Definition 2.14);
ω-Kleene closure was also used in the proof of Lemma 2.4.

The proof is performed by the following steps:
(i)⇒ (ii): trivial by definition,
(ii)⇔ (iii)⇔ (iv): shown by Cohen and Gold (1977, Theorem 4.1.8),
(iii)⇒ (v): follows from Lemma 2.4,
(v)⇒ (i): follows from Theorem 2.9.

2.3 Excursion: Simple Pushdown Automata

This section investigates some other possibilities to construct simple pushdown au-
tomata. Namely, the fist subsection treats simple pushdown automata of finite words.
The second subsection shows how to transform ω-pushdown automata that are already
realtime into simple ω-pushdown automata.

2.3.1 Finite Words

A similar idea as in Theorem 2.9 was used by Blass and Gurevich (2006) to show that
every context-free language is the projection of some regular nested word language.
We give here an idea how the construction for finite words looks like. We first need
some definitions. Most of them are analogous to the definitions of ωPDA above, but
for finite words, we accept by final state.

A simple pushdown automaton (PDA) (of finite words) over the alphabet Σ is a tuple
M = (Q, Γ, T, I, F) which syntactically is defined exactly as ωPDAs.

For the semantics, the notions configuration and label and the successor relation `t
M are

directly inherited from ωPDA.
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We recall here the definition of a run. A finite sequence of transitions ρ = (ti)0≤i≤m

with ti ∈ T is called a run of M = (Q, Γ, T, I, F) on w = label(ρ) iff there exists a
finite sequence of configurations (qi, γi)0≤i≤m such that (qi, γi) `ti

M (qi+1, γi+1) for each
0 ≤ i < m with γ0 = ε. Now, different to infinite words, this run is called successful if
qm ∈ F and if γm = ε.

For a PDA M = (Q, Γ, T, I, F) over Σ, the language accepted by M is denoted by
L(M) = {w ∈ Σ∗ | ∃ successful run of M on w}. A language L ⊆ Σ∗ is called PDA-
recognizable if there exists a PDA M with L(M) = L.

Theorem 2.12. Every context-free language is PDA-recognizable.

The proof is in some sense similar to the one for Theorem 2.9. But we need a new
dedicated final state and therefore also transitions leading to that state.

Proof. Let L be a context-free language. As shown by Autebert, Berstel and Boasson
(1997), we can assume that L is generated by a context-free grammar G = (N, Σ, P, S)
in quadratic Greibach normal form (this is defined exactly as for infinite words, cf. Def-
inition 2.3). For finite words, we exceptionally accept one ε-production for the start
symbol S if S is never used on the right side of a production. This allows ε ∈ L(G).

Assuming F /∈ N, we construct a PDA A = (Q, Γ, T, I, F) over Σ with Q = N ] {F},
Γ = N, I = {S},

F =

{
{F, S}, if S→ ε ∈ P

{F}, otherwise ,

and

T = {(A, a, B, (↓ C)) | A→ aBC ∈ P} ∪ (2.4)
= {(A, a, B, #) | A→ aB ∈ P} ∪ (2.5)
= {(A, a, B, (↑ B)) | A→ a ∈ P, B ∈ N} ∪ (2.6)
= {(A, a, F, #) | A→ a ∈ P} . (2.7)

Intuitively, the variable on the left side and the first variable on the right side of
the productions are simulated by states. The second variable on the right side of the
productions is pushed to the stack to store it for later. Whenever a final production is
processed (Equations (2.6) and (2.7)), it is checked if another non-terminal is waiting
on the stack to be processed before completing the run. The automaton model ensures
that runs end with an empty stack.

Let w = ε. Then,

w ∈ L(G) iff S→ ε ∈ P

iff S ∈ F

iff w = ε ∈ L(A) .
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2.3 Excursion: Simple Pushdown Automata

For words w 6= ε, we give here only an exemplified version of the proof as it is in fact
similar to the proof for infinite words above. For an intuition, note that an example
derivation of the form

δ : S S→aA
===⇒ aA A→bBC

====⇒ abBC B→cDE
====⇒ abcDEC D→d

==⇒ abcdEC E→e
==⇒ abcdeC

C→ f
==⇒ abcde f

corresponds to the run

ρ : (S, ε)
a,#−→ (A, ε)

b,(↓,C)−−−→ (B, C)
c,(↓,E)−−−→ (D, EC)

d,(↑,E)−−−→ (E, C)
e,(↑,C)−−−→ (C, ε)

f ,#−→ (F, ε)

of the automaton. Let α = a . . . cAB . . . C ∈ T jNk be the ith word in the derivation δ

of G and let β ∈ Q× Γl be the ith configuration in the run ρ of A. Then the terminals
a . . . c in α have been the labels of the transitions of ρ before the ith step. Furthermore,
the non-terminals AB . . . C of α correspond exactly to the ith configuration (A, B . . . C)
of ρ. This shows that derivations of G and runs of A are bijectively translated.

Note that the state F is always a sink. The construction allows the automaton to
switch to state F before the input word is completely processed. But the definition
of a successful run ensures that those runs are not successful. We can infer L(G) =

L(A).

Example 2.13. Let G = (N, Σ, P, S) be a grammar with N = {S, M, B}, Σ = {a, b} and

S→ ε | aB | aMB

M→ aB | aMB

B→ b .

Then G is in quadratic Greibach normal form and L(G) = {anbn | n ∈ N}. By the
construction above, it can be transformed into the PDA depicted in Fig. 2.2. Note that
Equation (2.6) generates a rule for every final production rule and every non-terminal
in the grammar. As there are no transitions that push S, M or F on the stack, we omit
their pop-rules here. O

2.3.2 Simplify Realtime ω-Pushdown Automata

This subsection shows how to transform pushdown automata of infinite words that
have already no ε-transitions into simple ω-pushdown automata. Similar constructions
should work for the weighted case but have not been extensively treated yet.

We assume we have a general ω-pushdown automaton without ε-transitions. We
show in four steps how to transform this automaton into a ωPDA.

Definition 2.14. An (unweighted) general ω-pushdown automaton without ε-transitions
(ωGPDA) over Σ denotes a tuple M = (Q, Γ, T, I, Z0, F) where
• Q, Γ, I and F are defined as for ωPDA,
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S M

B F

a, #

a, (↓, B)

a, #

b, #

a, (↓, B)

b, (↑, B)

Figure 2.2: Automaton constructed in Example 2.13

• T ⊆ Q× Σ× Γ×Q× Γ∗ is a finite set of transitions and
• Z0 ∈ Γ is the initial stack symbol. H

A configuration for an ωGPDA is defined as for ωPDA. Now, for an ωGPDA M =

(Q, Γ, T, I, Z0, F) and t = (q, σ, A, q′, β) ∈ T, we let (q, Aγ) `t
M (q′, βγ). The notions

label and state are defined as above (see page 16).
An infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T is called a run of the

ωGPDA M = (Q, Γ, T, I, Z0, F) on w = label(ρ) iff there exists an infinite sequence of
configurations (qi, γi)i≥0 such that (qi, γi) `ti

M (qi+1, γi+1) for each i ≥ 0 with q0 ∈ I
and γ0 = Z0. A run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅.

We will later use another type of automaton as an intermediate step in the transforma-
tion: An ωGPDA which starts with an empty stack M = (Q, Γ, T, I, F) is defined similarly
to an ωGPDA but for the run defined above, we require γ0 = ε as for ωPDA and there-
fore, the transition relation is of the more general type T ⊆ Q×Σ× (Γ∪ {ε})×Q× Γ∗.

For an ωGPDA, the language accepted by M is denoted by L(M) = {w ∈ Σω |
∃ successful run of M on w}.

Transformation The transformation is split into four parts. Each part is described in
its own paragraph.

We will start with an ωGPDA without ε-transitions. In Step 1, we transform it into
an ωGPDA that starts with an empty stack instead of using Z0. This automaton can
therefore “pop” ε from the stack in its transitions.

The second step is to mark the lowest symbol on the stack. This step is optional in
the unweighted case. It is added here as an option to avoid adding ambiguity in Step 4.
This should make it possible to use the transformation in the weighted case, too.

The third step reduces the amount of symbols pushed onto the stack per transition.
The result will be an ωGPDA that increases the stack size by at most one symbol per
transition.

The last step then transforms the stack access to the three available stack commands
in ωPDA, thus effectively removing the ability of the automaton to read and react to
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2.3 Excursion: Simple Pushdown Automata

the topmost stack symbol. Said differently, the last transformation changes the stack
accesses from “pop one symbol and push some” to either “pop one”, “push one” or
ignore the stack.

Step 1: Starting with an empty stack

Lemma 2.15. Let L = L(A) for an ωGPDA A = (Q, Γ, T, I, Z0, F) over Σ.
Then L = L(B) for an ωGPDA B = (Q′, Γ, T′, {q0}, F) over Σ that starts with an empty

stack and therefore has transitions T′ ⊆ Q′ × Σ× (Γ ∪ {ε})×Q′ × Γ∗. Additionally, B is
initial state normalized, i.e., for all transitions (p, a, γ, q, γ′) ∈ T′, we have q 6= q0, and B
only uses ε-stack-transitions, i.e., transitions (p, a, ε, q, γ), in the initial state.

Proof. Let Q′ = Q ] {q0}. The new set of transitions will be

T′ = T ∪ {(q0, a, ε, q, α) | (q0, a, Z0, q, α) ∈ T, q0 ∈ I, α ∈ Γ∗} .

Intuitively, the first transition is used to place the original initial stack symbol at the
right place.

Remember that computations inA cannot be continued whenever the stack becomes
empty. In B, this property is fulfilled because from every original state, there exist only
original transitions that pop something from the stack. In old initial states q, self-loops
that empty the stack are translated to transitions from q0 to q and for q the above again
holds.

Step 2: Marking the lowest stack symbol This step is only needed in the weighted
case to make Step 4 (Lemma 2.18) possible.

For a set Θ, we define Θ̄ = {s̄ | s ∈ Θ}. We further set Θ̈ = Θ ∪ Θ̄. We will use this
pattern to distinguish non-terminals in Γ̈: From now on, A ∈ Γ, Ā ∈ Γ̄ and for both
possibilities, we write Ä ∈ Γ̈.

Lemma 2.16. Let L = L(A) for an ωGPDA A = (Q, Γ, T, {q0}, F) over Σ that starts with
an empty stack (and therefore has transitions T ⊆ Q× Σ× (Γ ∪ {ε})×Q× Γ∗), is initial
state normalized and only uses ε-stack-transitions in the initial state.

Then L = L(B) for an ωGPDA B = (Q, Γ̈, T′, {q0}, F) over Σ that starts with an empty
stack and marks the lowest symbol A on the stack as Ā.

Proof. The new set of transitions will be

T′={(q0, a, ε, q, ε) | (q0, a, ε, q, ε) ∈ T}
∪ {(q0, a, ε, q, A1· · ·Al−1Āl) | (q0, a, ε, q, A1· · ·Al) ∈ T, l ≥ 1}
∪ {(p, a, Z, q, ε), (p, a, Z̄, q, ε) | (p, a, Z, q, ε) ∈ T}
∪ {(p, a, Z̄, q, A1· · ·Al−1Āl), (p, a, Z, q, A1· · ·Al) | (p, a, Z, q, A1· · ·Al) ∈ T, l ≥ 1} .
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We mark the lowest stack symbol when we first write it in the initial state q0. As A is
initial state normalized, we only do that once. In every other state, it is possible to pop
the marked symbol, and in this case, the lowest pushed symbol will again be marked.

Note that A only uses ε-stack-transitions in state q0 and therefore, empty stacks will
never be refilled outside of state q0. This means, when popping the marked symbol,
we do not need to mark any other symbol afterwards.

Step 3: Restricting the size of stack accesses

Lemma 2.17. Let L = L(A) for an ωGPDA A = (Q, Γ, T, {q0}, F) over Σ that starts with
an empty stack and therefore has transitions T ⊆ Q× Σ× (Γ ∪ {ε})×Q× Γ∗.

Then L = L(B) for an ωGPDA B = (Q, Γ′, T′, {q0}, F) over Σ that starts with an
empty stack and every transition increases the stack size by at most one, i.e., for all transitions
(p, a, α, q, β) ∈ T′, we have |β| − |α| ≤ 1.

Additionally, if A marks the lowest symbol A on the stack as Ā, then so does B.

Proof. Let n = max{|α| | (p, a, Z, q, α) ∈ T} be the longest stack access in A. Then let
Γ′ = Γ≤n where we define A≤n by A ∪ A2 ∪ . . . ∪ An. The new set of transitions will be

T′ = {
(

p, a, ε, q, ε
)
| (p, a, ε, q, ε) ∈ T}

∪ {
(

p, a, ε, q, (A1, . . . , Al)
)
| (p, a, ε, q, A1 · · · Al) ∈ T, 1 ≤ l ≤ n}

∪ {
(

p, a, (Z, X1, . . . , Xl), q, (X1, . . . , Xl)
)

| (p, a, Z, q, ε) ∈ T, 0 ≤ l ≤ n−1, Z 6= ε, Xi ∈ Γ}
∪ {
(

p, a, (Z, X1, . . . , Xl), q, (A, X1, . . . , Xl)
)

| (p, a, Z, q, A) ∈ T, 0 ≤ l ≤ n−1, Z 6= ε, Xi ∈ Γ}
∪ {
(

p, a, (Z, X1, . . . , Xl), q, (A1, . . . , Al)(X1, . . . , Xl)
)

| (p, a, Z, q, A1 · · · Al) ∈ T, 2 ≤ l ≤ n, 0 ≤ l ≤ n−1, Z 6= ε, Xi ∈ Γ} .

Note that (Z) and Z are used interchangeably. We further define that empty tuples ()
evaluate to ε.

Now assume that A marks the lowest stack symbol A as Ā. Define a function
f : Γ̈≤n → Γ̈′ as f ((X1, . . . , Xl)) = (X1, . . . , Xl) for 1 ≤ l ≤ n and f = idΓ≤n for all other
cases. Then f applied to Z and γ in all transitions (p, a, Z, q, γ) ∈ T′ of B yields the
desired result of B also marking the lowest stack symbol.

Step 4: Change stack access to simple commands

Lemma 2.18. Let L = L(A) for an ωGPDA A = (Q, Γ̈, T, {q0}, F) over Σ that starts with
an empty stack and therefore has transitions T ⊆ Q× Σ× (Γ̈ ∪ {ε})×Q× Γ̈∗ where for all
transitions (p, a, α, q, β) ∈ T, we have |β| − |α| ≤ 1. Additionally, A marks the lowest stack
symbol A as Ā.

Then L = L(B) for an ωPDA B = (Q′, Γ̈, T′, {q′0}, F′) over Σ.
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2.3 Excursion: Simple Pushdown Automata

Proof. The idea of the proof is to keep the topmost stack symbol only in local memory
and not on the stack. In this way, B can simulate to exchange the topmost symbol.

Let Q′ = Q× (Γ̈ ∪ {ε}), q′0 = (q0, ε) and F′ = F× (Γ̈ ∪ {ε}). The transitions are as
follows:

T′ = {
(
(p, Z), a, (q, Ä), ↑ Ä

)
| (p, a, Z, q, ε) ∈ T, Ä ∈ Γ̈}

∪ {
(
(p, Z), a, (q, ε), #

)
| (p, a, Z̄, q, ε) ∈ T}

∪ {
(
(p, Z̈), a, (q, Ä), #

)
| (p, a, Z̈, q, Ä) ∈ T}

∪ {
(
(p, Z̈), a, (q, A1), ↓ Ä2

)
| (p, a, Z̈, q, A1Ä2) ∈ T}

∪ {
(
(p, τ), a, (q, τ), #

)
| (p, a, ε, q, ε) ∈ T, τ ∈ Γ̈ ∪ {ε}}

∪ {
(
(p, Z̈), a, (q, A), ↓ Z̈

)
| (p, a, ε, q, A) ∈ T, Z̈ ∈ Γ̈}

∪ {
(
(p, ε), a, (q, Ā), #

)
| (p, a, ε, q, Ā) ∈ T}

Note how the first two and the last two sets of transitions are distinguished by Z or A,
respectively, being the lowest stack symbol or not.

The marked lowest stack symbol makes sure that states (q, ε) are not used unless the
stack is really empty. In this way, we keep the original number of runs unchanged and,
later on, do not change the weight.

As it does not depend on the stack for runs in the original automaton A to be
successful, we allow all original states F to be final independently of the topmost stack
symbol stored in the state.

By consecutive application of the above four lemmas, we get the following result.

Corollary 2.19. Let A be a ωGPDA. Then there exists a ωPDA B with L(B) = L(A).

Note that we have that result already by Theorem 2.9. But that theorem has much
worse complexity results. It needs the transformation of the ωGPDA into a grammar
and then the transformation of the grammar into Greibach normal form. In the case
that the ω-pushdown automaton already has no ε-transitions, the transformation can
be done much faster and more direct.

Note also that we conducted the transformation such that the same constructions can
probably be adapted to weighted automata (cf. Section 5.2). We can simply transfer the
original weights to the new transitions in every construction. As all runs are translated
one-to-one, the weights should be the same in the new automata. We can also state it
differently: The construction does not add new ambiguity to any of the automata. In
this way, a weighted automaton does not have the problem that some weight of one of
its runs counts multiple times to the final weight if this was not the case in the original
automaton.
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2.4 Matching ω-Logic

The goal of this section is to find a Büchi-type logical formalism that is expressively
equivalent to ωPDA. This extends the work of Lautemann, Schwentick and Thérien
(1994) who defined a logic for context-free languages of finite words. They use first-
order logic and equivalently monadic second-order logic (MSO) together with one
second-order variable that has to define a matching. Their proof uses context-free gram-
mars in a symmetric version of the Greibach normal form. Here we use a translation
from automata and therefore, we will use the monadic second-order approach.

This section is guided by the procedure of Droste and Perevoshchikov (2015a). Their
main result is a logical characterization of timed pushdown languages for finite words.

Let w ∈ Σω be an ω-word. The set of all positions of w is N.

Definition 2.20 (Lautemann, Schwentick and Thérien, 1994). A binary relation M ⊆
N×N is a matching if
• M is compatible with <, i.e., (i, j) ∈ M implies i< j,
• each element i belongs to at most one pair in M,
• M is non-crossing, i.e., (i, j) ∈ M and (k, l) ∈ M with i< k< j implies i< l< j.

Let Match(N) denote the set of all matchings in N×N. H

Let V1, V2 denote countable and pairwise disjoint sets of first-order and second-order
variables. We fix a matching variable µ /∈ V1 ∪V2. Let V = V1 ∪V2 ∪ {µ}.

We will define the logic in two steps. In the first layer of the logic, ωMSO(Σ), the
matching variable µ is unbounded. The second layer, ωML(Σ), existentially bounds
this variable. We will show in Section 2.6 that ωML(Σ) is expressively equivalent to
ωPDA. As an intermediate step in the corresponding proof, we will use the fact from
Section 2.5 that ωMSO(Σ) is expressively equivalent to visibly pushdown ω-automata.

Definition 2.21. Let Σ be an alphabet. The set ωMSO(Σ) of matching ω-MSO formulas
over Σ is defined by the extended Backus-Naur form (EBNF)

ϕ ::= Pa(x) | x ≤ y | x ∈ X | µ(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X. ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2. H

Positions in the word will later be assigned to variables in ϕ. Here, Pa(x) is a unary
predicate indicating that the xth letter of the word is a. Furthermore, µ(x, y) says that x
and y will be matched.

A V-assignment is a mapping σ : V → N ∪ 2N ∪Match(N) such that σ(V1) ⊆ N,
σ(V2) ⊆ 2N and σ(µ) ∈ Match(N).

Let σ be aV-assignment. For x ∈ V1 and j ∈N, the update σ[x/j] is theV-assignment
σ′ with σ′(x) = j and σ′(y) = σ(y) for all y ∈ V \ {x}. The update σ[X/J] for X ∈ V2

and J ⊆N and the update σ[µ/M] for M ∈ Match(N) are defined similarly.
Let ϕ ∈ ωMSO(Σ). Furthermore, let w = a0a1 . . . ∈ Σω and σ be a V-assignment.

We define (w, σ) |= ϕ inductively over the structure of ϕ as shown in Table 2.1, where
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(w, σ) |= Pa(x) iff aσ(x) = a

(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)

(w, σ) |= x ∈ X iff σ(x) ∈ σ(X)

(w, σ) |= µ(x, y) iff (σ(x), σ(y)) ∈ σ(µ)

(w, σ) |= ¬ϕ iff (w, σ) 6|= ϕ

(w, σ) |= ϕ ∨ ψ iff (w, σ) |= ϕ or (w, σ) |= ψ

(w, σ) |= ∃x. ϕ iff ∃j ∈N. (w, σ[x/j]) |= ϕ

(w, σ) |= ∃X. ϕ iff ∃J ⊆N. (w, σ[X/J]) |= ϕ

Table 2.1: The semantics of ωMSO(Σ) formulas

a ∈ Σ, x, y ∈ V1 and X ∈ V2. The logical counterparts ∧,→, ∀x. φ and ∀X. φ can be
gained in the usual way from negation and the existing operators.

We now define MATCHING(µ) ∈ ωMSO(Σ) which ensures that µ is matching.

Definition 2.22. Let

MATCHING(µ) = ∀x∀y. (µ(x, y)→ x < y)∧
∀x∀y∀k.

(
(µ(x, y) ∧ k 6= x ∧ k 6= y)→ ¬µ(x, k) ∧ ¬µ(k, x) ∧ ¬µ(y, k) ∧ ¬µ(k, y)

)
∧ ∀x∀y∀k∀l.

(
(µ(x, y) ∧ µ(k, l) ∧ x < k < y)→ x < l < y

)
,

where x 6= y, x < y and i < j < k have the usual translation. H

Definition 2.23. We let ωML(Σ), the set of formulas of matching ω-logic over Σ, be the
set of all formulas ψ of the form

ψ = ∃µ. (ϕ ∧MATCHING(µ)) ,

for short ψ = ∃matchµ. ϕ, where ϕ ∈ ωMSO(Σ). H

Let w ∈ Σω and σ be a V-assignment. Then, (w, σ) |= ψ if there exists a matching
M ⊆N2 such that (w, σ[µ/M]) |= ϕ.

Let ψ ∈ ωML(Σ). We denote by Free(ψ) ⊆ V the set of free variables of ψ. A formula
ψ with Free(ψ) = ∅ is called a sentence. For a sentence ψ, the validity of (w, σ) |= ψ

does not depend on σ. Therefore, σ will be omitted and we only write w |= ψ. We
denote by L(ψ) = {w ∈ Σω | w |= ψ} the language defined by ψ. A language L ⊆ Σω

is ωML-definable if there exists a sentence ψ ∈ ωML(Σ) such that L(ψ) = L.

Example 2.24. Let

ϕ = ∀x∃y. (µ(x, y) ∨ µ(y, x)) ∧ [(Pa(x) ∧ Pa(y)) ∨ (Pb(x) ∧ Pb(y))]

∧ ¬∃x∃y∃z1∃z2∃z3∃z4. x< z1< z2< z3< z4<y ∧ µ(x, y) ∧ µ(z1, z2) ∧ µ(z3, z4)
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x z1 z2 z3 z4 y

Figure 2.3: Forbidden pattern in Example 2.24

and consider the formula ψ = ∃matchµ. ϕ.
The first line of the formula states that every letter is matched and that matched pairs

always have the same letter (in this example, we assume Σ = {a, b}.). The second line
forbids two consecutive matchings between two matched positions like in Figure 2.3.

Now, the language defined by ψ is an infinite sequence of palindromes:

L(ψ) = Lω for L = {wwR | w ∈ Σ∗}

where for w = a1a2 . . . an, we define wR = anan−1 . . . a1. O

The following will be the second main result.

Theorem 2.25. Let Σ be an alphabet and L ⊆ Σω an ω-language. Then L is ωML-definable
if and only if L is ωPDA-recognizable.
After some preparations, this theorem will be proved in Section 2.6.

2.5 Visibly Pushdown ω-Languages

It turns out that the ωMSO(Σ) formulas correspond exactly to the MSO-logic defined
for visibly pushdown ω-languages (Alur and Madhusudan, 2004). In fact, without con-
sidering the existential quantification over the matching relation ∃matchµ, the matching
must explicitly be encoded in the words; the result is a nested word. For the conve-
nience of the reader, we recall nested words and visibly pushdown languages (Alur
and Madhusudan, 2004, 2009) in this section.

A nested alphabet is a triple Σ̃ = (Σ↓, Σ#, Σ↑) with Σ↓, Σ# and Σ↑ being pairwise
disjoint sets of push, internal and pop letters, respectively. Let Σ̂ = Σ↓ ∪ Σ# ∪ Σ↑.

Definition 2.26. A visibly pushdown ω-automaton (ωVPA) over the nested alphabet Σ̃ is
a 6-tuple M = (Q, Γ, T, I, F) where
• Q is a finite set of states,
• Γ is a finite stack alphabet,
• T = T↓ ∪ T# ∪ T↑ is a set of transitions, with

– T↓ ⊆ Q× Σ↓ ×Q× ({↓} × Γ),
– T# ⊆ Q× Σ# ×Q× {#},
– T↑ ⊆ Q× Σ↑ ×Q× ({↑} × Γ),

• I is a set of initial states and
• F is a set of (Büchi accepting) final states. H
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The following definitions are mostly similar to the ones for ωPDAs. The only dif-
ference is that the definition for T above restricts push transitions to push letters, pop
transitions to pop letters and internal transitions to internal letters.

A configuration of an ωVPA M = (Q, Γ, T, I, F) is a pair (q, γ), where q ∈ Q and γ ∈
Γ∗. We define the transition relation as follows. Let γ ∈ Γ∗. For t = (q, σ, q′, (↓, A)) ∈
T↓, we write (q, γ) `t

M (q′, Aγ). For t = (q, σ, q′, #) ∈ T#, we write (q, γ) `t
M (q′, γ).

Finally, for t = (q, σ, q′, (↑, A)) ∈ T↑, we write (q, Aγ) `t
M (q′, γ).

We denote by state(q, σ, q′, s) = q the state and by label(q, σ, q′, s) = σ the la-
bel of a transition. Both are extended to infinite sequence of transitions by letting
state((ti)i≥0) = (state(ti))i≥0 ∈ Qω for the infinite sequence of states and similarly
label((ti)i≥0) = (label(ti))i≥0 ∈ Σ̂ω for the infinite word constructed from the labels of
the transitions.

We call an infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T a run of M on
w = label(ρ) ∈ Σ̂ω iff there exists an infinite sequence of configurations (qi, γi)i≥0 with
q0 ∈ I and γ0 = ε such that (qi, γi) `ti

M (qi+1, γi+1) for each i ≥ 0.
A run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅.

Definition 2.27. For an ωVPA M = (Q, Γ, T, I, F) over Σ̃, the language accepted by M
is denoted by L(M) = {w ∈ Σ̂ω | ∃ successful run of M on w}. A language L ⊆ Σ̂ω is
ωVPA-recognizable with respect to Σ̃ if there exists an ωVPA M = (Q, Γ, T, I, F) over Σ̃
with L(M) = L. H

Note that the ωVPA-recognizable languages with respect to Σ̃ form a proper subclass
of the ωPDA-recognizable languages over Σ̂.

Also note that the definition here differs from the definition of Alur and Madhusudan
(2004) by the way how we handle the empty stack. Alur and Madhusudan allow their
automata to check if the stack is empty by reading the special symbol ⊥. The ωVPA
does not allow this check directly. But the ωVPA can duplicate all its states and stack
symbols to allow us to distinguish between states with empty stack and those with non-
empty stack. Whenever pushing a symbol onto the empty stack, this new stack symbol
has to contain the extra information that upon popping that symbol, the automaton
has to change to an empty-stack state afterwards. Compare this to Lemma 2.16.

Let f : Σ̂ → Σ̂′ be a mapping. It respects nesting if f (Σ↓) ⊆ Σ′↓, f (Σ#) ⊆ Σ′# and
f (Σ↑) ⊆ Σ′↑. The mapping will be extended to words in the natural way.

Theorem 2.28 (Alur and Madhusudan, 2004). Let L1 ⊆ Σ̂ω and L2 ⊆ Σ̂ω be ωVPA-
recognizable with respect to Σ̃. Then L1 ∪ L2, L1 ∩ L2, Σ̂ω \ L1 are ωVPA-recognizable with
respect to Σ̃. If f : Σ̂→ Σ̂′ is a mapping that respects nesting, then f (L1) is ωVPA-recognizable
with respect to Σ̃′.

We now discuss how the logic ωMSO has the same expressive power as ωVPAs.
Note that all ωMSO(Σ) formulas may contain the free variable µ. In the following
we will not differentiate between a word w ∈ Σ̂ω and the pair (π(w), σ) where σ is
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a {µ}-assignment mapping µ to the matching relation encoded in w. We extend the
semantics definitions as follows. Let ϕ ∈ ωMSO(Σ) and Free(ϕ) ⊆ {µ}, then we
define

Lnw(ϕ) = {(w, σ(µ)) | w ∈ Σω, σ is a {µ}-assignment with (w, σ) |= ϕ} .

Note that pairs (w, ν) with ν ∈ Match(N) are called nested words by Alur and Mad-
husudan (2009). Now, we describe how nested words are encoded into a nested
alphabet, which we call here tagged alphabet, tag(Σ) = ({a↓ | a ∈ Σ}, {a# | a ∈ Σ}, {a↑ |
a ∈ Σ}) where the tagged letters a↓, a# and a↑ are not occurring in Σ. For that, consider
a word w = a0a1 · · · and a {µ}-assignment σ. The encoding for (w, σ(µ)) is the tagged
word w̃ = ã0 ã1 · · · where ãi = a↓i if there exists a position y with µ(i, y), and ãi = a↑i
if there exists a position x with µ(x, i), and ãi = a#

i otherwise. This encoding will
be extended to sets of nested words like Lnw(ϕ) in the natural way. The underlying
alphabet will be called Σ̂tag = {σ↓ | σ ∈ Σ} ∪ {σ# | σ ∈ Σ} ∪ {σ↑ | σ ∈ Σ}.

Theorem 2.29 (Alur and Madhusudan, 2004). Let L ⊆ Σ̂ω
tag. Then, L is ωVPA-recog-

nizable with respect to tag(Σ) iff there is an ωMSO(Σ)-formula ϕ with Free(ϕ) ⊆ {µ} and
Lnw(ϕ) = L.

The mapping π : Σ̂tag → Σ removes the “tag” of a tagged letter. Thus, π maps a↓,
a# and a↑ to a. This can be extended to words by letting π(a0a1 · · · ) = π(a0)π(a1) · · ·
and to languages L ⊆ Σ̂ω

tag by setting π(L) = {π(w) | w ∈ L}.

Lemma 2.30. Let L ⊆ Σ̂ω
tag be ωVPA-recognizable with respect to tag(Σ). Then π(L) ⊆ Σω

is ωPDA-recognizable.

This has been proved by Blass and Gurevich (2006) for finite nested words. Here,
we present their proof adopted similarly to infinite words.

Proof. Let A = (Q, Γ, T, I, F) be an ωVPA over tag(Σ) with L(A) = L. We construct
an ωPDA B = (Q, Γ, T′, I, F) over Σ such that L(B) = π(L). Let

T′ = {(q, π(a), p, s) | (q, a, p, s) ∈ T} .

Now,

L(B) = {w ∈ Σω | ∃ successful run of B on w}
= {w ∈ Σω | ∃ successful run ρ of B on w = w0w1 · · · and

ρ : (q0, γ0)
w0−→ (q1, γ1)

w1−→ · · · }
= {w ∈ Σω | ∃ run ρ of B on w with Inf(state(ρ)) ∩ F 6= ∅ and

ρ : (q0, γ0)
w0−→ (q1, γ1)

w1−→ · · · and
w = w0w1 · · · = π(v0)π(v1) · · · = π(v)}
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= {w ∈ Σω | w = π(v) and ∃ run ρ′ of A on v = v0v1 · · · with

Inf(state(ρ′)) ∩ F 6= ∅ and ρ′ : (q0, γ0)
v0−→ (q1, γ1)

v1−→ · · · }
= {π(v) | v ∈ Σ̂ω

tag and ∃ successful run ρ′ of A on v = v0v1 · · · with

ρ′ : (q0, γ0)
v0−→ (q1, γ1)

v1−→ · · · }
= π{v ∈ Σ̂ω

tag | ∃ successful run of A on v}
= π(L(A)) = π(L) .

2.6 Equivalence of Logic and Context-Free ω-Languages

This section proves the expressive equivalence of the full logic and simple ω-pushdown
automata. Together with our results on simple ω-pushdown automata, this shows the
expressive equivalence of the logic and ω-context-free languages.

Let a = (a1, . . . , an) ∈ A1 × . . .× An be a tuple. Then we define for 1 ≤ i ≤ n the ith

projection of a by pri(a) = ai.

Lemma 2.31. Let Σ be an alphabet and L ⊆ Σω be ωPDA-recognizable. Then L is ωML-
definable.

Proof. By assumption, there exists an ωPDA A = (Q, Σ, Γ, T, I, F) with L(A) = L. Let
T = {t1, . . . , tm} be an enumeration of the transitions. We define an ωML-sentence ψ

such that L(ψ) = L as follows. We hereby proceed similarly to the lines of Droste and
Gastin (2007).

First, we will need an auxiliary formula

next(x, y) = x < y ∧ ¬(∃z. x < z ∧ z < y) .

We define the set of second-order variables V = {Xt | t ∈ T}. The following three
ωMSO(Σ) formulas ψpart, ψcomp and ψfinal will be used. We let

ψpart = ∀x.
∨
t∈T

(
x ∈ Xt ∧

∧
t′∈T : t 6=t′

x /∈ Xt′
)

.

Then ψpart ensures that the variables Xt form a partitioning of the positions x. Now let

ψcomp = ∀x.
(

ϕfirst(x) ∧
∧
t∈T

(
x ∈ Xt → (ϕ1(x, t) ∧ ϕ2(x, t) ∧ ϕ3(x, t))

)
∧ ϕ4(x)

)
,
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and let

ϕfirst(x) = ∀y. (x ≤ y)→
∨

t∈T : pr1(t)∈I

x ∈ Xt ,

ϕ1(x, (q, a, q′, s)) = Pa(x) ,
ϕ2(x, (q, a, q′, s)) = ∀y.

(
next(x, y)→

∨
t′∈T : pr1(t′)=q′

y ∈ Xt′
)

,

ϕ3(x, (q, a, q′, (↑, A))) = ∃y.
( ∨

t∈T : pr4(t)=(↓,A)

y ∈ Xt ∧ µ(y, x)
)

,

ϕ4(x) = ∀y. µ(x, y)→
∨

t, t′ ∈ T : pr4(t) = (↓, A),

pr4(t
′) = (↑, A′),

A = A′

(x ∈ Xt ∧ y ∈ X′t) .

Then ψcomp ensures that there exists a run of the automaton. Note how we simulate
the stack of the automaton: The formula ϕ3 expresses a sufficient condition and the
formula ϕ4 expresses a necessary condition for a pair (x, y) to be matched.

The necessary condition ϕ4 restricts the amount of possible instances of the matching
variable µ. Without this restriction, the constructed ωML-formula would allow two
positions to be matched even if they were not connected by a push and pop transition
in the original automaton. While we use it here for the sake of completeness, ϕ4

is indispensable in the weighted case (see Chapter 5) because an automaton with,
e.g., only one possible run must be translated into a formula with only one possible
instantiation of the matching variable µ.

Finally, ψfinal controls the acceptance condition that final states have to occur infinitely
often in a successful run:

ψfinal = ∀x∃y.
(

x < y ∧
∨

t∈T : pr1(t)∈F

y ∈ Xt

)
.

Let ψsuccessful ∈ ωMSO(Σ) be the following boolean formula that is true only for
successful runs of M:

ψsuccessful = ψpart ∧ ψcomp ∧ ψfinal (2.8)

Now, let ψ ∈ ωML(Σ) be the sentence defined as

ψ = ∃matchµ. ψsuccessful .

Then,

L(ψ) = {w ∈ Σω | ∃matching M s.t. (w, ∅[µ/M]) |= ψpart ∧ ψcomp ∧ ψfinal}
= {w ∈ Σω | ∃ successful run of A on w}
= L(A) = L .

The other direction uses the corresponding results for visibly pushdown languages.
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Lemma 2.32. Let Σ be an alphabet and L ⊆ Σω be ωML-definable. Then L is ωPDA-
recognizable.

Proof. Let ψ = ∃matchµ.ϕ ∈ ωML(Σ) be a sentence with L(ψ) = L.
We know ϕ ∈ ωMSO(Σ) with Free(ϕ) ⊆ {µ}. Let L′ = Lnw(ϕ). By Theorem 2.29,

L′ ⊆ Σ̂ω is ωVPA-recognizable with respect to Σ̃ = ({σ↓ | σ ∈ Σ}, {σ# | σ ∈ Σ}, {σ↑ |
σ ∈ Σ}).

The remaining existential quantification over the matching relation µ is exactly the
projection π from ωVPA-recognizable languages to ωPDA-recognizable languages. By
Lemma 2.30, L = π(L′) is ωPDA-recognizable.

Proof of Theorem 2.25. This theorem is immediate by Lemmas 2.31 and 2.32.

Concluding, we can summarize:

Corollary 2.33. Let L ⊆ Σω. The following are equivalent:
(i) L is ωPDA-recognizable,

(ii) L is an ω-context-free language,
(iii) L is ωML-definable.
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CHAPTER 3

Weighted Greibach Normal Form

The goal of this chapter is the Greibach normal form of weighted context-free lan-
guages of infinite words. As by Kuich and Salomaa (1986) and Ésik and Kuich (2007a),
the weighted context-free languages of finite and infinite words are described by solu-
tions of ω-algebraic systems and mixed ω-algebraic systems of equations. In the main
result of this chapter, we show that these systems can be transformed into a Greibach
normal form.

In the literature, Greibach normal forms, central for context-free languages of finite
words, have been established for ω-context-free languages (of infinite words) (Cohen
and Gold, 1977) and also for algebraic systems of equations for series over finite words
(Kuich and Salomaa, 1986; Ésik and Kuich, 2007a); this latter result is employed in our
proof. Hence, here we extend these classical results to a weighted version for infinite
words.

The Preliminaries given in this chapter describe also the basics needed for the next
chapter, Chapter 4. Then, in Section 3.2, we characterize ω-algebraic series by a series
of equivalent statements.

In Section 3.3, we define mixed ω-algebraic systems and their canonical solutions.
The main result of section states that each ω-algebraic series is a component of a
canonical solution of a mixed ω-algebraic system in Greibach normal form.

In Section 3.4 we specialize the main result of Section 3.3: now each ω-algebraic
series is a component of a canonical solution of an ω-algebraic system in Greibach
normal form.

This chapter is based on Droste, Dziadek and Kuich (2019b, 2020c).

3.1 Preliminaries

For the convenience of the reader, we recall definitions and results by Ésik and Kuich
(2007a).

A monoid 〈S,+, 0〉 is called complete if it is equipped with sum operations ∑I for all
families (ai | i ∈ I) of elements of S, where I is an arbitrary index set, such that the
following conditions are satisfied (see Conway, 1971; Eilenberg, 1974; Kuich, 1997):

(i) ∑
i∈∅

ai = 0, ∑
i∈{j}

ai = aj, ∑
i∈{j,k}

ai = aj + ak for j 6= k ,

(ii) ∑
j∈J

(
∑
i∈Ij

ai
)
= ∑

i∈I
ai , if

⋃
j∈J

Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′ .
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1 2
b

c
a d

Figure 3.1: Depiction of matrix M =

(
a b
c d

)
as automaton

Furthermore, a semiring 〈S,+, ·, 0, 1〉 is called complete if 〈S,+, 0〉 is a complete monoid
and if we additionally have

(iii) ∑
i∈I

(c · ai) = c ·
(
∑
i∈I

ai
)
, ∑

i∈I
(ai · c) =

(
∑
i∈I

ai
)
· c .

This means that a semiring S is complete if it has “infinite sums” (i) that are an
extension of the finite sums, (ii) that are associative and commutative and (iii) that
satisfy the distributivity laws.

A semiring S equipped with an additional unary star operation ∗ : S→ S is called a
starsemiring. In complete semirings for each element a, the star a∗ of a is defined by

a∗ = ∑
j≥0

aj .

Hence, each complete semiring is a starsemiring, called a complete starsemiring.
Starsemirings allow us to generalize the star operation to matrices. Let M ∈ Sn×n,

then we define M∗ ∈ Sn×n inductively as in Ésik, Kuich Ésik and Kuich (2007a), pp.
14–15 as follows. For n = 1 and M = (a), for a ∈ S, we let M∗ = (a∗). Now, for n > 1,
we partition M into submatrices, called blocks,

M =

(
a b
c d

)
, (3.1)

with a ∈ S1×1, b ∈ S1×(n−1), c ∈ S(n−1)×1, d ∈ S(n−1)×(n−1), and we define

M∗ =
(

(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

)
. (3.2)

Whenever we use a matrix M as defined in (3.1), the corresponding automaton can
be illustrated as in Figure 3.1.

A semiring is called continuous if it is ordered, each directed subset has a least upper
bound and addition and multiplication preserve the least upper bound of directed sets.
Any continuous semiring is complete. See Ésik and Kuich (2007a) for background.

Suppose that S is a semiring and V is a commutative monoid written additively. We
call V a (left) S-semimodule if V is equipped with a (left) action

S×V → V

(s, v) 7→ sv
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subject to the following rules:

s(s′v) = (ss′)v , (s + s′)v = sv + s′v , s(v + v′) = sv + sv′ ,

1v = v , 0v = 0 , s0 = 0 ,

for all s, s′ ∈ S and v, v′ ∈ V. If V is an S-semimodule, we call (S, V) a semiring-
semimodule pair.

Suppose that (S, V) is a semiring-semimodule pair such that S is a starsemiring and
S and V are equipped with an omega operation ω : S → V. Then we call (S, V) a
starsemiring-omegasemimodule pair.

Ésik and Kuich (2007b) define a complete semiring-semimodule pair to be a semiring-
semimodule pair (S, V) such that S is a complete semiring and V is a complete monoid
with

s
(

∑
i∈I

vi

)
= ∑

i∈I
svi and

(
∑
i∈I

si

)
v = ∑

i∈I
siv ,

for all s ∈ S, v ∈ V, and for all families (si)i∈I over S and (vi)i∈I over V; moreover, it is
required that an infinite product operation

Sω 3 (s1, s2, . . .) 7→ ∏
j≥1

sj ∈ V

is given mapping infinite sequences over S to V subject to the following three conditions:

(i) ∏
i≥1

si = ∏
i≥1

(sni−1+1 · · · · · sni) ,

(ii) s1 ·∏
i≥1

si+1 = ∏
i≥1

si ,

(iii) ∏
j≥1

∑
ij∈Ij

sij = ∑
(i1,i2,... )∈I1×I2×...

∏
j≥1

sij ,

where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ . . . and I1, I2, . . . are arbitrary index
sets. This means that the left action of the semimodule is distributive and it is required
that it has “infinite products” mapping infinite sequences over S to V such that the
product (i) can be partitioned (an infinite form of associativity), (ii) can be extended
from the left and (iii) satisfies an infinite distributivity law.

Suppose that (S, V) is complete. Then we define

s∗ = ∑
i≥0

si and sω = ∏
i≥1

s ,

for all s ∈ S. This turns (S, V) into a starsemiring-omegasemimodule pair. Observe
that, if (S, V) is a complete semiring-semimodule pair, then 0ω = 0.

A star-omega semiring is a semiring S equipped with unary operations ∗ and ω : S→ S.
A star-omega semiring S is called complete if (S, S) is a complete semiring-semimodule
pair, i.e., if S is complete and is equipped with an infinite product operation that
satisfies the three conditions stated above. A complete star-omega semiring S is called
continuous if the semiring S is continuous.
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Example 3.1. Formal languages are covered by our model. Let 〈B,+, ·, 0, 1〉 be the
Boolean semiring. Then let 0∗ = 1∗ = 1 and take infima as infinite products. This
makes B a continuous star-omega and commutative semiring. It then follows that
B〈〈Σ∗〉〉 ×B〈〈Σω〉〉 is isomorphic to formal languages of finite and infinite words with
the usual operations.

The semiring 〈N∞,+, ·, 0, 1〉 with N∞ = N∪ {∞} and the natural infinite product
operation of numbers is a continuous star-omega and commutative semiring.

The tropical semiring 〈N∞, min,+, ∞, 0〉 with the usual infinite sum operation as
infinite product is a commutative semiring and a continuous star-omega semiring.

Analogously, the arctic semiring 〈N̄, max,+,−∞, 0〉 with N̄ = N ∪ {−∞, ∞} and
the infinite sum operation as infinite product is a commutative semiring and a continu-
ous star-omega semiring. O

A Conway semiring (see Conway, 1971; Bloom and Ésik, 1993) is a starsemiring S
satisfying the sum star identity

(a + b)∗ = a∗(ba∗)∗

and the product star identity
(ab)∗ = 1 + a(ba)∗b

for all a, b ∈ S. Observe that by Ésik and Kuich (2007a, Theorem 1.2.24), each complete
starsemiring is a Conway semiring.

Note that from the identities in Conway semirings, it follows

a∗ = 1 + aa∗ = 1 + a∗a ,
a(ba)∗ = (ab)∗a ,

(3.3)

for all a, b ∈ S.
If S is a Conway semiring then so is Sn×n. Let M ∈ Sn×n. Assume that n > 1 and

write M as in (3.1). Applying the identities of Conway semirings, we get an equivalent
definition (cf. Conway, 1971, pp. 27–28) to (3.2):

M∗ =
(

(a + bd∗c)∗ a∗b(d + ca∗b)∗

d∗c(a + bd∗c)∗ (d + ca∗b)∗

)
. (3.4)

Following Bloom and Ésik (1993), we call a starsemiring-omegasemimodule pair
(S, V) a Conway semiring-semimodule pair if S is a Conway semiring and if the omega
operation satisfies the sum omega identity and the product omega identity:

(a + b)ω = (a∗b)ω + (a∗b)∗aω and (ab)ω = a(ba)ω ,

for all a, b ∈ S. By Ésik, Kuich Ésik and Kuich (2007b) each complete semiring-
semimodule pair is a Conway semiring-semimodule pair.

Observe that the omega fixed-point equation holds, i.e.

aaω = aω ,

38



3.1 Preliminaries

for all a ∈ S.
Consider a starsemiring-omegasemimodule pair (S, V). Following Bloom and Ésik

(1993), we define a matrix operation ω : Sn×n → Vn×1 on a starsemiring-omegasemi-
module pair (S, V) as follows. If n = 0, Mω is the unique element of V0, and if n = 1,
so that M = (a), for some a ∈ S, Mω = (aω). Assume now that n > 1 and write M as
in (3.1). Then

Mω =

(
(a + bd∗c)ω + (a + bd∗c)∗bdω

(d + ca∗b)ω + (d + ca∗b)∗caω

)
.

Additionally, the matrix star identity is valid for Conway semirings and states that the
star of a matrix is independent of the partitioning of the matrix. The matrix omega
identity is valid for Conway semiring-semimodule pairs and states that the operation
ω is independent of the partitioning of the matrix, i.e., the blocks of (3.1) can have
arbitrary sizes: a ∈ Sn1×n1 , b ∈ Sn1×n2 , c ∈ Sn2×n1 , d ∈ Sn2×n2 for n1 + n2 = n. If (S, V)

is a Conway semiring-semimodule pair, then so is (Sn×n, Vn). See also Ésik and Kuich
(2007a, p. 106).

Following Ésik and Kuich (2005b), we define matrix operations ω,t : Sn×n → Vn×1

for 0 ≤ t ≤ n as follows. Assume that M ∈ Sn×n is decomposed into blocks a, b, c, d as
in (3.1), but with a of dimension t× t and d of dimension (n− t)× (n− t). Then

Mω,t =

(
(a + bd∗c)ω

d∗c(a + bd∗c)ω

)
. (3.5)

Observe that Mω,0 = 0 and Mω,n = Mω. Intuitively, M can be interpreted as an
adjacency matrix and Mω,t are infinite paths where the first t states are repeated states,
i.e., states that are Büchi-accepting.

The next theorem states that, in case of a Conway semiring, Mω,t, for 0 ≤ t ≤ n,
can be computed also in a way different from its definition and, with certain limits, is
independent of the partitioning of the matrix M.

Theorem 3.2. Let S be a Conway semiring and 0 ≤ t ≤ k ≤ n. Assume M ∈ Sn×n is
decomposed into blocks

M =

(
a b
c d

)
with block a being of dimension k× k and block d of dimension (n− k)× (n− k).

Then we have,

Mω,t =

(
(a + bd∗c)ω,t

d∗c(a + bd∗c)ω,t

)
. (3.6)

Proof. The proof resembles the proof of the matrix omega identity (cf. Ésik and Kuich,
2007a, Theorem 5.3.13). Assume M ∈ Sn×n is decomposed into nine blocks

M =

 f g h
i a b
j c d


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with dimensions f ∈ St×t, a ∈ S(k−t)×(k−t) and d ∈ S(n−k)×(n−k). Consider the following
two partitionings:

M =

 f g h
i
j

a b
c d

 M′ =

 f g
i a

h
b

j c d


Now we need to show that Mω,t, calculated as in (3.5)

Mω,t =

 α(
a b
c d

)∗ (i
j

)
α

 ,

where

α =

(
f +

(
g h

) (a b
c d

)∗ (i
j

))ω

is equal to M′ω,t, calculated as in (3.6)

M′ω,t =

(
µ

d∗
(

j c
)

µ

)
,

where

µ =

((
f g
i a

)
+

(
h
b

)
d∗
(

j c
))ω,t

.

In the case t = k, we have

M = M′ =
(

f h
j d

)
.

It follows that

α = ( f + hd∗ j)ω

= ( f + hd∗ j)ω,t = µ ,

where the second equality is due to t being the full dimension of f + hd∗ j. The second
components of Mω,t and M′ω,t then both reduce to d∗ j( f + hd∗ j)ω.

If k = n, we have

M = M′ =
(

f g
i a

)
.

Now, the second component of M′ω,t and the second summand of µ have dimension 0
and thus

M′ω,t =

(
f g
i a

)ω,t

= Mω,t

Hence, in the following, we can assume t < k < n.
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First, we compute Mω,t. We denote the blocks of Mω,t by (Mω,t)i for 1 ≤ i ≤ 3. Then
we have

(Mω,t)1 = α =

(
f +

(
g h

) (a b
c d

)∗ (i
j

))ω

=

(
f +

(
g h

) ( (a + bd∗c)∗ a∗b(d + ca∗b)∗

d∗c(a + bd∗c)∗ (d + ca∗b)∗

)(
i
j

))ω

=

(
f +

(
g h

) ((a + bd∗c)∗i + a∗b(d + ca∗b)∗ j
d∗c(a + bd∗c)∗i + (d + ca∗b)∗ j

))ω

=
(

f + g(a + bd∗c)∗i + ga∗b(d + ca∗b)∗ j

+ hd∗c(a + bd∗c)∗i + h(d + ca∗b)∗ j
)ω .

Here, we used the star of a matrix in the form shown in (3.4). We will now compute
the other two blocks by using the star of a matrix as in (3.2):(

(Mω,t)2
(Mω,t)3

)
=

(
a b
c d

)∗ (i
j

)
α

=

(
(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

)(
i
j

)
α

=

(
(a + bd∗c)∗i + (a + bd∗c)∗bd∗ j
(d + ca∗b)∗ca∗i + (d + ca∗b)∗ j

)
α

=

((
(a + bd∗c)∗i + (a + bd∗c)∗bd∗ j

)
α(

(d + ca∗b)∗ca∗i + (d + ca∗b)∗ j
)
α

)
Now, we compute M′ω,t. We denote the blocks of M′ω,t by (M′ω,t)i for 1 ≤ i ≤ 3.

Then we have (
(M′ω,t)1
(M′ω,t)2

)
= µ =

((
f g
i a

)
+

(
h
b

)
d∗
(

j c
))ω,t

=

((
f g
i a

)
+

(
hd∗ j hd∗c
bd∗ j bd∗c

))ω,t

=

(
f + hd∗ j g + hd∗c
i + bd∗ j a + bd∗c

)ω,t

=

(
δ

(a + bd∗c)∗(i + bd∗ j)δ

)
,

where
δ =

(
f + hd∗ j + (g + hd∗c)(a + bd∗c)∗(i + bd∗ j)

)ω .

It remains to calculate

(M′ω,t)3 = d∗
(

j c
)

µ

= d∗
(

j + c(a + bd∗c)∗(i + bd∗ j)
)
δ .
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The last step is to verify the three equalities (Mω,t)i = (M′ω,t)i for 1 ≤ i ≤ 3. The
first equality follows basically from Lemma 1.2.16 of Ésik and Kuich (2007a). We will
mark the use of Lemma 1.2.16 by ♦ and obtain

(Mω,t)1 = α

=
(

f + g(a + bd∗c)∗i + ga∗b(d + ca∗b)∗ j

+ hd∗c(a + bd∗c)∗i + h(d + ca∗b)∗ j
)ω

♦
=
(

f + hd∗ j + g(a + bd∗c)∗i + g(a + bd∗c)∗bd∗ j

+ hd∗c(a + bd∗c)∗i + hd∗c(a + bd∗c)∗bd∗ j
)ω

=
(

f + hd∗ j + g(a + bd∗c)∗(i + bd∗ j) + hd∗c(a + bd∗c)∗(i + bd∗ j)
)ω

=
(

f + hd∗ j + (g + hd∗c)(a + bd∗c)∗(i + bd∗ j)
)ω

= δ = (M′ω,t)1

For the second equality, we have

(Mω,t)2 =
(
(a + bd∗c)∗i + (a + bd∗c)∗bd∗ j

)
α

=
(
(a + bd∗c)∗(i + bd∗ j)

)
δ

= (M′ω,t)2 .

Now, for the third equality, it suffices to prove

(d + ca∗b)∗ca∗i + (d + ca∗b)∗ j = d∗
(

j + c(a + bd∗c)∗(i + bd∗ j)
)

.

We have

d∗
(

j + c(a + bd∗c)∗(i + bd∗ j)
)
= d∗ j + d∗c(a + bd∗c)∗(i + bd∗ j)

= d∗ j + d∗c(a + bd∗c)∗i + d∗c(a + bd∗c)∗bd∗ j

= d∗ j + d∗c(a∗bd∗c)∗a∗i + d∗c(a∗bd∗c)∗a∗bd∗ j

= d∗ j + (d∗ca∗b)∗d∗ca∗i + (d∗ca∗b)∗d∗ca∗bd∗ j

= (d∗ca∗b)∗d∗ca∗i + (d∗ca∗b)∗d∗ca∗bd∗ j + d∗ j

= (d∗ca∗b)∗d∗ca∗i +
(
(d∗ca∗b)∗d∗ca∗b + 1

)
d∗ j

= (d∗ca∗b)∗d∗ca∗i + (d∗ca∗b)∗d∗ j

= (d + ca∗b)∗ca∗i + (d + ca∗b)∗ j .

Note that for this calculation, we rely heavily on commutativity of addition, distribu-
tivity and the sum star identity and the product star identity of Conway semirings
together with their derived identities (3.3). This completes the proof.

We will use quemirings as defined by Elgot (1976) and as elaborated on by Ésik and
Kuich (2007a, pp. 109 ff.).
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(x + y) + z = x + (y + z)

x + y = y + x

x + 0 = x

(x · y) · z = x · (y · z)
x · 1 = x

1 · x = x

(x + y) · z = (x · z) + (y · z)
0 · x = 0

x¶ · (y + z) = (x¶ · y) + (x¶ · z)
x = x¶ + (x · 0)

x¶ · 0 = 0

(x + y)¶ = x¶ + y¶

(x · y)¶ = x¶ · y¶

Table 3.1: Axioms of quemirings

Consider a semiring-semimodule pair (S, V) and let T = S × V. We define an
addition given componentwise, i.e.,

(s, v) + (s′, v′) = (s + s′, v + v′) ,

a semidirect product type multiplication (using that S acts on V), i.e.,

(s, v) · (s′, v′) = (ss′, v + sv′) ,

a unary operation
(s, v)¶ = (s, 0) ,

and two constants 0 = (0, 0) and 1 = (1, 0).
Now, a quemiring is an algebraic structure (T,+, ·, ¶, 0, 1) with the above operations

and constants satisfying the axioms in Table 3.1. Note that these axioms follow from
the axioms of semiring-semimodule pairs applied to the above operations.

The constant 0 only behaves like a zero from the left. Additionally, a quemiring is
not necessarily distributive from the left. However, if V is idempotent, then we indeed
have

x · (y + z) = x · y + x · z .

That makes a quemiring quasi a semiring.
While the operation ¶ selects the first component, multiplication with 0 from the right

selects the second component, i.e.,

(s, v) · 0 = (0, v) .
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For a quemiring T, we have that S = T¶ = {x¶ | x ∈ T} is a semiring. Moreover,
V = T0 = {x · 0 | x ∈ T} is a T¶-semimodule. Elgot (1976) showed that a quemiring
T is isomorphic to a quemiring S×V determined by the semiring-semimodule pair
(S, V). It follows that we can identify every element t of a quemiring T by a pair (s, v)
of a semiring-semimodule pair (S, V). Note that subsequently in this thesis, we will
only use quemirings S×V.

Also, if (S, V) is a starsemiring-omegasemimodule pair, we define a star operation
on T = S×V, by

(s, v)⊗ = (s∗, sω + s∗v) ,

making it a generalized starquemiring (see Ésik and Kuich, 2007a).
For an alphabet Σ, we call mappings r of Σ∗ into S series. The collection of all such

series r is denoted by S〈〈Σ∗〉〉. We call the set supp(r) = {w | (r, w) 6= 0} the support of
a series r. The set of series with finite support S〈Σ∗〉 = {s ∈ S〈〈Σ∗〉〉 | supp(s) is finite}
is called the set of polynomials. We denote by S〈Σ〉, S〈{ε}〉 and S〈Σ ∪ {ε}〉 the series
with support in Σ, {ε} and Σ ∪ {ε}, respectively. Series s with |supp(s)| ≤ 1 are called
monomials. Note that polynomials are finite sums of monomials.

Mappings of Σω into S are called ω-series and their collection is denoted by S〈〈Σω〉〉.
See Kuich and Salomaa (1986) and Ésik and Kuich (2007a) for more information.
Examples of monomials in S〈Σ∗〉 for a semiring 〈S,+, ·, 0, 1〉 are 0, w, sw for s ∈ S and
w ∈ Σ∗, defined by
(0, w) = 0 for all w,
(w, w) = 1 and (w, w′) = 0 for w 6= w′,
(sw, w) = s and (sw, w′) = 0 for w 6= w′.

Note that w = 1w.

3.2 ω-Algebraic Systems

This section introduces (mixed) ω-algebraic systems and gives a characterization of
ω-algebraic series. The ω-algebraic systems in some sense generalize context-free
grammars of infinite words. In fact, ω-algebraic systems handle finite and infinite
words at the same time. We will also use mixed ω-algebraic systems where the finite
and the infinite words are divided into two parts.

In the sequel, x, y and z denote vectors of dimension n, i.e., x = (x1, . . . , xn), y =

(y1, . . . , yn) and z = (z1, . . . , zn). Later, we will also use z of dimension m. It is clear by
the context whether they are used as row or as column vectors. Similar conventions
hold for vectors p, σ, ω and τ. Moreover, X denotes the set of variables {x1, . . . , xn} for
S〈〈Σ∗〉〉, while {z1, . . . , zn} is the set of variables for S〈〈Σω〉〉. The set Y denotes the set
of variables {yi, . . . , yn} for the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉.

It makes sense to first define algebraic systems that are a generalization of context-free
grammars of finite words. Let Σ be an alphabet and let S be a continuous semiring.
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3.2 ω-Algebraic Systems

An algebraic system over Salg〈〈Σ∗〉〉 is a system of equations

xi = pi(x), for pi ∈ S〈(Σ ∪ X)∗〉 and 1 ≤ i ≤ n ,

or equivalently

x = p(x), for p ∈ (S〈(Σ ∪ X)∗〉)n×1 .

A solution of x = p(x) is given by σ ∈ (Salg〈〈Σ∗〉〉)n such that σ = p(σ). We call a
solution (σ1, . . . , σn) least solution if

σi ≤ τi, for each 1 ≤ i ≤ n,

for all solutions (τ1, . . . , τn) of x = p(x).
We can also generalize right-linear grammars in the same manner. An algebraic

system xi = pi(x) is called linear system if for each 1 ≤ i ≤ n, we have

pi = ∑
1≤j≤n

Mijxj + Ri, where Mij, Ri ∈ Salg〈〈Σ∗〉〉 .

For a matrix M ∈ (Salg〈〈Σ∗〉〉)n×n and a column vector R ∈ (Salg〈〈Σ∗〉〉)n×1, we can
write the above system as

x = Mx + R .

We let Salg〈〈Σ∗〉〉, the algebraic series, be the collection of all components of least
solutions of algebraic systems

xi = pi(x) where pi ∈ S〈(Σ ∪ X)∗〉 for 1 ≤ i ≤ n .

For the rest of this chapter, S is a continuous, and therefore complete, star-omega semiring.
If we consider S〈〈Σ∗〉〉 or S〈〈Σω〉〉, then we assume additionally that the underlying
semiring S is commutative. Let further Σ denote an alphabet.

By Theorem 5.5.5 of Ésik and Kuich (2007a), (S〈〈Σ∗〉〉, S〈〈Σω〉〉) is a complete semi-
ring-semimodule pair, hence a Conway semiring-semimodule pair, satisfying εω = 0.
Hence, S〈〈Σ∗〉〉×S〈〈Σω〉〉 is a generalized starquemiring.

We will be working with two different generalizations of ω-context-free grammars,
the ω-algebraic systems and the mixed ω-algebraic systems.

An ω-algebraic system over the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉 consists of an algebraic
system over S〈〈Σ∗〉〉×S〈〈Σω〉〉

y = p(y), for p ∈ (S〈(Σ ∪Y)∗〉)n×1 .

The vector of quemiring elements τ ∈ (S〈〈Σ∗〉〉×S〈〈Σω〉〉)n is a solution of the ω-
algebraic system

y = p(y) ,

if
τ = p(τ) .
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Note that every pi is a polynomial, i.e., a finite sum of monomials in S〈(Σ ∪ Y)∗〉.
Let yi = (xi, zi), for 1 ≤ i ≤ n. Now, we can apply the quemiring addition and
multiplication to p.

Consider a monomial

t(y1, . . . , yn) = sw0yi1 w1 . . . wk−1yik wk ,

where s ∈ S and wi ∈ Σ∗ for 1 ≤ i ≤ k. Note that from the quemiring operations, we
have

t((x1, z1), . . . , (xn, zn)) = (sw0xi1 w1 . . . wk−1xik wk, sw0zi1 + sw0xi1 w1zi2 + . . .

+ sw0xi1 w1 · · ·wk−2xik−1 wk−1zik) .

Therefore, following Ésik and Kuich (2007a), we define

tx(x1, . . . , xn, z1, . . . , zn) = sw0zi1 + sw0xi1 w1zi2 + . . .

+ sw0xi1 w1 · · ·wk−2xik−1 wk−1zik ,

and for a polynomial p(y1, . . . , yn) = ∑1≤j≤m tj(y1, . . . , yn), we let

px(x1, . . . , xn, z1, . . . , zn) = ∑
1≤j≤m

(tj)x(x1, . . . , xn, z1, . . . , zn) .

For an ω-algebraic system y = p(y) over S〈〈Σ∗〉〉×S〈〈Σω〉〉, we call x = p(x),
z = px(x, z) the mixed ω-algebraic system over S〈〈Σ∗〉〉×S〈〈Σω〉〉 induced by y = p(y).

In general, a mixed ω-algebraic system over the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉 consists
of an algebraic system over S〈〈Σ∗〉〉

x = p(x), p ∈ (S〈(Σ ∪ X)∗〉)n×1

and a linear system over S〈〈Σω〉〉

z = ρ(x)z, ρ ∈ (S〈(Σ ∪ X)∗〉)m×m .

The pair (σ, ω) ∈ (S〈〈Σ∗〉〉)n× (S〈〈Σω〉〉)m is a solution of the mixed ω-algebraic system

x = p(x), z = ρ(x)z ,

if
σ = p(σ), ω = ρ(σ)ω .

Observe that, by Theorem 5.5.1 of Ésik and Kuich (2007a), ω(k) = ρ(σ)ω,k for each
1 ≤ k ≤ n, is solution for the linear system

z = ρ(σ)z .

If σ is the least solution of x = p(x), then z = ρ(σ)z is an Salg〈〈Σ∗〉〉-linear system
and (σ, ω(k)) = (σ, ρ(σ)ω,k), where k ∈ {0, 1, . . . , m}, is called kth-canonical solution of
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x = p(x), z = ρ(x)z. Observe that the kth canonical solution is unique by definition. A
solution (σ, ω) is called canonical, if there exists a k such that (σ, ω) is the kth-canonical
solution. The kth-canonical solution of an ω-algebraic system y = p(y) is defined to
be the kth-canonical solution of the mixed ω-algebraic system x = p(x), z = px(x, z)
induced by y = p(y).

We let Salg〈〈Σω〉〉, the ω-algebraic series, be the collection of all components of vectors
Mω,k, where M ∈ (Salg〈〈Σ∗〉〉)n×n, for n ≥ 1 and k ∈ {1, . . . , n}.

Moreover, we let ω-Rat(Salg〈〈Σ∗〉〉) be the ω-Kleene closure of (i.e., the generalized
starquemiring generated by) Salg〈〈Σ∗〉〉.

Example 3.3. Consider the following ω-algebraic system over the quemiring B〈〈Σ∗〉〉×
B〈〈Σω〉〉 for the Boolean semiring 〈B,+, ·, 0, 1〉

y1 = y2y1 + ε

y2 = ay2b + ε ,

where a, b ∈ Σ. This induces the following mixed ω-algebraic system

x1 = x2x1 + ε z1 = z2 + x2z1

x2 = ax2b + ε z2 = az2 .

Then for the algebraic system x = p(x) over B〈〈Σ∗〉〉, we get the least solution
σ2 = ∑n≥0 anbn and therefore σ1 = (∑n≥0 anbn)∗. For the semimodule part, we can
consider the first canonical solution where only z1 is Büchi-accepting and the sec-
ond canonical solution where both z1 and z2 are Büchi-accepting. The first canonical
solution of the mixed ω-algebraic system x = p(x), z = px(x, z) over B〈〈Σ∗〉〉 ×
B〈〈Σω〉〉 is then (σ1, σ2; (∑n≥0 anbn)ω, 0). The second canonical solution would be
(σ1, σ2; (∑n≥0 anbn)ω + (∑n≥0 anbn)∗aω, aω). O

Example 3.4. We consider the following mixed ω-algebraic system over the quemiring
N∞〈〈Σ∗〉〉 ×N∞〈〈Σω〉〉 for the tropical semiring 〈N∞, min,+, ∞, 0〉

x1 = 1ax1b + 1ab z1 = cz1

z2 = x1z1 + z1

where a, b, c ∈ Σ and using the natural number 1.
Then for the algebraic system x = p(x) over N∞〈〈Σ∗〉〉, we get the least solution

σ = anbn 7→ n. The first canonical solution of the mixed ω-algebraic system x = p(x),
z = ρ(x)z over N∞〈〈Σ∗〉〉 ×N∞〈〈Σω〉〉 is then (σ, cω 7→ 0, anbncω 7→ n). Hence
the series anbncω 7→ n is ω-algebraic but it is clearly not recognizable by a weighted
automaton without stack. O

Now we have the following characterization of ω-algebraic series.
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Theorem 3.5. Let S be a continuous complete star-omega semiring with the underlying semiring
S being commutative and let Σ be an alphabet. Then the following statements are equivalent for
(s, υ) ∈ S〈〈Σ∗〉〉×S〈〈Σω〉〉:

(i) (s, υ) ∈ Salg〈〈Σ∗〉〉 × Salg〈〈Σω〉〉,
(ii) (s, υ) ∈ ω-Rat(Salg〈〈Σ∗〉〉),
(iii) (s, υ) = ‖A‖, where A is a finite Salg〈〈Σ∗〉〉-automaton over S〈〈Σ∗〉〉×S〈〈Σω〉〉,
(iv) s ∈ Salg〈〈Σ∗〉〉 and υ = ∑1≤j≤l sjtω

j for some l ≥ 0, where sj, tj ∈ Salg〈〈Σ∗〉〉,
(v) (s, υ) is a component of a canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉×

S〈〈Σω〉〉.

Proof. The statements (ii), (iii) and (iv) are equivalent by Theorem 5.4.9 (see also
Theorem 5.6.6) of Ésik and Kuich (2007a).

(iii)⇒(v): Assume that (s, υ) = ‖A‖, where A = (n, I, M, P, k) is a finite Salg〈〈Σ∗〉〉-
automaton. Without loss of generality A is normalized by Theorem 5.4.2 of Ésik and
Kuich (2007a); i.e., I = ei for some i. Hence, (s, υ) = ((M∗P)i, (Mω,k)i) is a component
of the kth canonical solution of the mixed ω-algebraic system

x = Mx + P, z = Mz .

(v)⇒(i): Assume there exists a mixed ω-algebraic system x = p(x), z = ρ(x)z, with
canonical solution (σ, ρ(σ)ω,k) such that (s, υ) = (σi, (ρ(σ)ω,k)j) for some i and j. Since
the entries of σ and ρ(σ) are in Salg〈〈Σ∗〉〉, (s, υ) is in Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉.

(i)⇒(iv): Now assume s ∈ Salg〈〈Σ∗〉〉 and υ=(Mω,k)i for some M∈ (Salg〈〈Σ∗〉〉)n×n,
n ≥ 1, and i, k ∈ {1, . . . , n}. By the definition of Mω,k, each entry of Mω,k is of the form
∑1≤j≤l sjtω

j for some l ≥ 0, where sj, tj ∈ Salg〈〈Σ∗〉〉 for 1 ≤ j ≤ l.

3.3 Greibach Normal Form for Mixed ω-Algebraic Systems

In this section we show that for any element (s, υ) of Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉 there exists
a mixed ω-algebraic system in Greibach normal form such that (s, υ) is a component of
a solution of this ω-algebraic system.

Similar to the definition for algebraic systems on finite words (see Chapter 4, p. 69
and cf. Greibach, 1965), a mixed ω-algebraic system

x = p(x), z = ρ(x)z

is in Greibach normal form if

supp(pi(x)) ⊆ {ε} ∪ Σ ∪ ΣX ∪ ΣXX, for all 1 ≤ i ≤ n, and
supp(ρij(x)) ⊆ Σ ∪ ΣX, for all 1 ≤ i, j ≤ m .

Note that in the previous chapter, Chapter 2, we called the normal form above
quadratic Greibach normal form. As we will only consider the quadratic version from
now on, we will skip the “quadratic” to save space in this and the subsequent chapters.
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For the construction of the Greibach normal form we need a corollary to Theorem 3.5.

Corollary 3.6. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉×S〈〈Σω〉〉 is equivalent to the
statements (i) to (v) of Theorem 3.5:
s ∈ Salg〈〈Σ∗〉〉 and υ = ∑1≤j≤l sjtω

j for some l ≥ 0, where sj, tj ∈ Salg〈〈Σ∗〉〉with (tj, ε) = 0;
moreover (sj, ε) = 0 or sj = (sj, ε)ε.

Proof. Assume (sj, ε) 6= 0. Then sj = (sj, ε)ε + s′j where (s′j, ε) = 0, and sjtω
j =

(sj, ε)tω
j + s′jt

ω
j .

Assume (tj, ε) 6= 0. Then tj = (tj, ε)ε + t′j, where (t′j, ε) = 0. Since (S〈〈Σ∗〉〉,
S〈〈Σω〉〉) is a Conway semiring-semimodule pair satisfying εω = 0, we obtain tω

j =

((tj, ε)∗ε∗t′j)
ω with (tj, ε)∗ε∗t′j ∈ Salg〈〈Σ∗〉〉, since ((tj, ε)ε)ω = (tj, ε)ωεω = 0.

We now assume that (s, υ) ∈ Salg〈〈Σ∗〉〉 × S〈〈Σω〉〉 is given in the form of Corol-
lary 3.6 with l = 1. By Theorem 2.4.10 of Ésik and Kuich (2007a), there exist algebraic
systems in Greibach normal form whose first component of their least solutions equals
s1, t1.

Firstly, we deal with the case (s1, ε) = 0. Let

xi = pi(x) + ∑
1≤j≤n

pij(x)xj, for each 1 ≤ i ≤ n, (∗)

where supp(pi(x)) ⊆ Σ∪ΣX, supp(pij(x)) ⊆ ΣX, be the algebraic system in Greibach
normal form for s1 and

x′i = p′i(x′) + ∑
1≤j≤m

p′ij(x′)x′j, for each 1 ≤ i ≤ m, (∗∗)

where supp(p′i(x′)) ⊆ Σ ∪ ΣX′, supp(pij(x′)) ⊆ ΣX′, be the algebraic system in
Greibach normal form for t1. Let σ and σ′ with σ1 = s1 and σ′1 = t1 be the least
solutions of (∗) and (∗∗), respectively.

Consider now the mixed ω-algebraic system consisting of the algebraic system (∗),
(∗∗) over S〈〈Σ∗〉〉 and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ + ∑
1≤j≤m

p′1j(x′)z′j ,

z′i = p′i(x′)z′′ + ∑
1≤j≤m

p′ij(x′)z′j, for 1 ≤ i ≤ m ,

zi = pi(x)z′′ + ∑
1≤j≤n

pij(x)zj, for 1 ≤ i ≤ n .

(∗ ∗ ∗)

Observe that the mixed ω-algebraic system is in Greibach normal form. We then
order the variables of the mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗) as x1, . . . , xn;
x′1, . . . , x′m; z′′; z′1, . . . , z′m; z1, . . . , zn. After an example, we will prove that

(σ1, . . . , σn; σ′1, . . . , σ′m; σ′1σ′ω1 ; σ′1σ′ω1 , . . . , σ′mσ′ω1 ; σ1σ′ω1 , . . . , σnσ′ω1 ) (3.7)

is a solution of (∗), (∗∗), (∗ ∗ ∗). Observe that σ′1σ′ω1 = σ′ω1 .
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Example 3.7. Consider the quemiring N∞〈〈Σ∗〉〉 ×N∞〈〈Σω〉〉 for the tropical semiring
〈N∞, min,+, ∞, 0〉. Note that subsequently, 1 stands for the natural number 1 and the
neutral element of the semiring multiplication is 1 = 0.

We now define algebraic systems in Greibach normal form for s = anbn 7→ n and
t = ((dd)∗c) 7→ 0. Let

x1 = 1ax2 + 1ax1x2 x′1 = c + dx′2x′1
x2 = b x′2 = d

Here, x1 is the start variable for s and x′1 is the start variable for t. In the proof, these
two systems are called (∗) and (∗∗). Now, we construct a mixed ω-algebraic system:

z′′ = cz′′ + dx′2z′1
z′1 = cz′′ + dx′2z′1 z′2 = dz′′

z1 = 1ax2z′′ + 1ax1z2 z2 = bz′′

In the new system (corresponding to (∗ ∗ ∗)), variable z′′ is Büchi-accepting and vari-
able z1 acts as the start variable, i.e., we consider the fourth component (with the
ordering z′′, z′1, z′2, z1, z2) of the first canonical solution. The semimodule part of the
solution is stω = anbn((dd)∗c)ω 7→ n. Note that the equation for z′′ is needed in this
example because z′1 is not allowed to be Büchi-accepting to prevent (dd)ω as part of the
canonical solution. O

Lemma 3.8. The mixed ω-algebraic system (∗), (∗∗), (∗ ∗ ∗) has solution

(σ1, . . . , σn; σ′1, . . . , σ′m; σ′1σ′ω1 ; σ′1σ′ω1 , . . . , σ′mσ′ω1 ; σ1σ′ω1 , . . . , σnσ′ω1 )

Proof. Again, observe that σ′ω1 = σ′1σ′ω1 . We obtain, for the first equation,

p′1(σ
′)σ′ω1 + ∑

1≤j≤m
p′1j(σ

′)σ′j σ
′ω
1 =

(
p′1(σ

′) + ∑
1≤j≤m

p′1j(σ
′)σ′j
)
σ′ω1

= σ′1σ′ω1 ,

then, for 1 ≤ i ≤ m, and the second equation,

p′i(σ
′)σ′ω1 + ∑

1≤j≤m
p′ij(σ

′)σ′j σ
′ω
1 =

(
p′i(σ

′) + ∑
1≤j≤m

p′ij(σ
′)σ′j
)
σ′ω1

= σ′i σ′ω1 ,

and, for 1 ≤ i ≤ n, and the third equation,

pi(σ)σ
′ω
1 + ∑

1≤j≤n
pij(σ)σjσ

′ω
1 =

(
pi(σ) + ∑

1≤j≤n
pij(σ)σj

)
σ′ω1

= σiσ
′ω .
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But we need more: We will prove that this solution is the first canonical solution of
(∗), (∗∗), (∗ ∗ ∗).

Lemma 3.9. The solution (3.7) is the first canonical solution of the mixed ω-algebraic system
(∗), (∗∗), (∗ ∗ ∗).

Proof. Let

P′1m(x′) =
(

p′11(x′) · · · p′1m(x′)
)

,

P′m1(x′) =

 p′1(x′)
...

p′m(x′)

 , P′mm(x′) =

 p′11(x′) . . . p′1m(x′)
...

...
p′m1(x′) . . . p′mm(x′)

 ,

Pn1(x) =

p1(x)
...

pn(x)

 , Pnn(x) =

p11(x) . . . p1n(x)
...

...
pn1(x) . . . pnn(x)

 ,

z =

z1
...

zn

 , z′ =

 z′1
...

z′m

 ,

and

M(x, x′) =

 p′1(x′) P′1m(x′) 0
P′m1(x′) P′mm(x′) 0
Pn1(x) 0 Pnn(x)

 .

Then the linear system (∗ ∗ ∗) can be written in the formz′′

z′

z

 = M(x, x′)

z′′

z′

z

 .

Hence, the first canonical solution of (∗), (∗∗), (∗ ∗ ∗) is (σ, σ′, M(σ, σ′)ω,1). Before
we prove our lemma, we prove three identities.

The system (∗) can be written in the form

x = Pn1(x) + Pnn(x)x, for x = (x1, . . . , xn)
T .

By the diagonal identity (see Proposition 2.2.11 of Ésik and Kuich (2007a)) the system

x = Pn1(σ) + Pnn(σ)x

has the same least solution as (∗). Hence,

σ = Pnn(σ)
∗Pn1(σ) . (3.8)

The system (∗∗) can be written in the form

x′ = P′m1(x′) + P′mm(x′)x′, for x′ = (x′1, . . . , x′m)
T .

51



Chapter 3 Weighted Greibach Normal Form

Again, by the diagonal identity (see Proposition 2.2.11 of Ésik and Kuich, 2007a) the
system

x′ = P′m1(σ
′) + P′mm(σ

′)x′

has the same solution. Hence

σ′ = P′mm(σ
′)∗P′m1(σ

′) . (3.9)

It follows for the first component

σ′1 =
(

P′mm(σ
′)∗P′m1(σ

′)
)

1

=
(

P′m1(σ
′) + P′mm(σ

′)+P′m1(σ
′)
)

1

=
(

P′m1(σ
′) + P′mm(σ

′)P′mm(σ
′)∗P′m1(σ

′)
)

1

= p′1(σ
′) + P′1m(σ

′)P′mm(σ
′)∗P′m1(σ

′) . (3.10)

We now compute

(Mω,1(σ, σ′))z′′ =

[
p′1(σ

′) +
(

P′1m(σ
′) 0
) (P′mm(σ

′) 0
0 Pnn(σ)

)∗ (P′m1(σ
′)

Pn1(σ)

)]ω

=

[
p′1(σ

′) +
(

P′1m(σ
′) 0
) (P′mm(σ

′)∗ 0
0 Pnn(σ)∗

)(
P′m1(σ

′)
Pn1(σ)

)]ω

=
[
p′1(σ

′) + P′1m(σ
′)P′mm(σ

′)∗P′m1(σ
′)
]ω

= σ′ω1 .

The last equality is by (3.10).
When starting with another variable zi or z′j for 1 ≤ i ≤ n and 1 ≤ j ≤ m, we get

(Mω,1(σ, σ′))(z′,z) =

(
P′mm(σ

′) 0
0 Pnn(σ)

)∗ (P′m1(σ
′)

Pn1(σ)

)
(Mω,1(σ, σ′))z′′

=

(
P′mm(σ

′)∗ 0
0 Pnn(σ)∗

)(
P′m1(σ

′)
Pn1(σ)

)
σ′ω1

=

(
P′mm(σ

′)∗P′m1(σ
′)

Pnn(σ)∗Pn1(σ)

)
σ′ω1

Thus, by (3.9), we have, for 1 ≤ i ≤ m,

(Mω,1(σ, σ′))z′i
=
[
P′mm(σ

′)∗P′m1(σ
′)
]

i σ′ω1 = σ′i σ′ω1 ,

and, by (3.8), we have, for 1 ≤ i ≤ n,

(Mω,1(σ, σ′))zi = [Pnn(σ)
∗Pn1(σ)]i σ′ω1 = σiσ

′ω
1 .

This completes the proof.
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Secondly, we deal with the case s1 = (s1, ε)ε. Consider now the mixed ω-algebraic
system consisting of (∗∗) and the linear system over S〈〈Σω〉〉

z′′ = p′1(x′)z′′ + ∑
1≤j≤m

p′1j(x′)z′j ,

z′i = p′i(x′)z′′ + ∑
1≤j≤m

p′ij(x′)z′j, 1 ≤ i ≤ m ,

z1 = (s1, ε)p′1(x′)z′′ + (s1, ε) ∑
1≤j≤m

p′1j(x′)z′j .

(∗∗∗∗)

Lemma 3.10. The mixed ω-algebraic system (∗∗), (∗∗∗∗) has solution

(σ′1, . . . , σ′m; σ′1σ′ω1 ; σ′1σ′ω1 , . . . , σ′mσ′ω1 ; (s1, ε)σ′ω1 ) . (3.11)

Proof. As in the proof of Lemma 3.8, we obtain that (σ′1σ′ω1 ; σ′1σ′ω1 , . . . , σ′mσ′ω1 ) is solution
of the z′′- and z′i-equations, 1 ≤ i ≤ m. For the right side of the z1-equation, we obtain

(s1, ε)
(

p′1(σ
′)σ′ω1 + ∑

1≤j≤m
p′1j(σ

′)σ′j σ
′ω
1

)
= (s1, ε)σ′1σ′ω1 = (s1, ε)σ′ω1 .

But again we need more: We will prove that this solution is the first canonical solution
of (∗∗), (∗∗∗∗).

Lemma 3.11. The solution (3.11) is the first canonical solution of the mixed algebraic system
(∗∗), (∗∗∗∗).

Proof. Let

Mε(x′) =

 p′1(x′) P′1m(x′) 0
P′m1(x′) P′mm(x′) 0

(s1, ε)p′1(x′) (s1, ε)P′1m(x′) 0

 .

Then the linear system (∗∗∗∗) can be written in the formz′′

z′

z1

 = Mε(x′)

z′′

z′

z1

 .

Hence, the first canonical solution of (∗∗), (∗∗∗∗) is (σ′, Mε(σ′)ω,1). We now com-
pute

(Mω,1
ε (σ′))z′′

=

[
p′1(σ

′) +
(

P′1m(σ
′) 0
) ( P′mm(σ

′) 0
(s1, ε)P′1m(σ

′) 0

)∗ ( P′m1(σ
′)

(s1, ε)p′1(σ
′)

)]ω

=

[
p′1(σ

′) +
(

P′1m(σ
′) 0
) ( P′mm(σ

′)∗ 0
(s1, ε)P′1m(σ

′)P′mm(σ
′)∗ 1

)(
P′m1(σ

′)
(s1, ε)p′1(σ

′)

)]ω

=
[
p′1(σ

′) + P′1m(σ
′)P′mm(σ

′)∗P′m1(σ
′)
]ω

= σ′ω1 .
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The last equality is by (3.10).
When starting with another variable z′i or z1 for 1 ≤ i ≤ m, we get

(Mω,1
ε (σ′))(z′,z1) =

(
P′mm(σ

′) 0
(s1, ε)P′1m(σ

′) 0

)∗ ( P′m1(σ
′)

(s1, ε)p′1(σ
′)

)
(Mω,1

ε (σ′))z′′

=

(
P′mm(σ

′)∗ 0
(s1, ε)P′1m(σ

′)P′mm(σ
′)∗ 1

)(
P′m1(σ

′)
(s1, ε)p′1(σ

′)

)
σ′ω1

=

(
P′mm(σ

′)∗P′m1(σ
′)

(s1, ε)P′1m(σ
′)P′mm(σ

′)∗P′m1(σ
′) + (s1, ε)p′1(σ

′)

)
σ′ω1

Thus, by (3.9), we have, for 1 ≤ i ≤ m,

(Mω,1
ε (σ′))z′i

=
[
P′mm(σ

′)∗P′m1(σ
′)
]

i σ′ω1 = σ′i σ′ω1 ,

and, by (3.10), we have

(Mω,1
ε (σ′))z1 =

(
(s1, ε)P′1m(σ

′)P′mm(σ
′)∗P′m1(σ

′) + (s1, ε)p′1(σ
′)
)
σ′ω1

= (s1, ε)
(

P′1m(σ
′)P′mm(σ

′)∗P′m1(σ
′) + p′1(σ

′)
)
σ′ω1

= (s1, ε)σ′1σ′ω1 = (s1, ε)σ′ω1 .

We now consider general sums of series of the above form. The next lemma shows
how to construct a mixed ω-algebraic system whose canonical solution is the sum of
the canonical solutions of multiple mixed ω-algebraic systems as given in Lemmas 3.9
and 3.11.

Lemma 3.12. Let (s, υ) ∈ Salg〈〈Σ∗〉〉 × S〈〈Σω〉〉 be given in the form of Corollary 3.6. Then
there exists a mixed ω-algebraic system in Greibach normal form such that υ is a component of
its lth canonical solution.

Proof. Let υ = ∑1≤i≤l sitω
i as in the statement of Corollary 3.6 and let l ≥ 1. By

Lemmas 3.9 and 3.11, for 1 ≤ i ≤ l, there exist mixed ω-algebraic systems

xi = pi(xi), (])(
zi
z̄i

)
= Mi(xi)

(
zi
z̄i

)
,

in Greibach normal form with

Mi(xi) =

(
ai bi
ci di

)
,

where

ai ∈ (S〈(Σ ∪ X)∗〉)1×1,

bi ∈ (S〈(Σ ∪ X)∗〉)1×(ni−1),

ci ∈ (S〈(Σ ∪ X)∗〉)(ni−1)×1,

di ∈ (S〈(Σ ∪ X)∗〉)(ni−1)×(ni−1),
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such that sitω
i is a component of the first canonical solution of the ith system. We will

assume without loss of generality that sitω
i is the first component of variable z̄i, i.e.,

sitω
i =

[
(Mω,1

i )z̄i

]
1
= [(d∗i ci)(ai + bid∗i ci)

ω]1 . (3.12)

Similarly to the case of summation in Theorem 5.4.4 of Ésik and Kuich (2007a), we
consider now the mixed ω-algebraic system consisting of the algebraic systems (]) over
S〈〈Σ∗〉〉 and the linear system over S〈〈Σω〉〉

ẑ = Mẑ , (]])

with

M =



a1
. . .

al


b1

. . .
bl

 0

c1
. . .

cl


d1

. . .
dl

 0

(
c1 · · · cl

) (
d1 · · · dl

)
0


, ẑ =



z1
...
zl
z̄1
...
z̄l
z′


.

Note that this system ]] is still in Greibach normal form.
We order the variables of the mixed ω-algebraic system (]), (]]) as z1, . . . , zl ; z̄1, . . . , z̄l ;

z′. We now compute the lth canonical solution, starting with variable z = (z1, . . . , zl)
T.

Then

(Mω,l)z

=


a1

. . .
al

+


b1

. . .
bl

 0



d1

. . .
dl

 0

(
d1 · · · dl

)
0


∗
c1

. . .
cl

(
c1 · · · cl

)



ω

=


a1

. . .
al

+


b1

. . .
bl

 0




d1
. . .

dl


∗

0

(
d1 · · · dl

)d1
. . .

dl


∗

1




c1

. . .
cl

(
c1 · · · cl

)




ω

=


a1

. . .
al

+

b1
. . .

bl


d1

. . .
dl


∗c1

. . .
cl




ω

=

(a1 + b1d∗1c1)
ω

...
(al + bld∗l cl)

ω

 .
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When starting with the new variable z′, we get a sum of the original solutions:

(Mω,l)z′ =



d1

. . .
dl

 0

(
d1 · · · dl

)
0


∗
c1

. . .
cl

(
c1 · · · cl

)
 (Mω,l)z


l+1

=





d1
. . .

dl


∗

0

(
d1 · · · dl

)d1
. . .

dl


∗

1




c1

. . .
cl

(
c1 · · · cl

)
 (Mω,l)z


l+1

=





d1
. . .

dl


∗c1

. . .
cl


(
d1d∗1 · · · dld∗l

)c1
. . .

cl

+
(
c1 · · · cl

)


(Mω,l)z


l+1

=




d∗1c1
. . .

d∗l cl

(
d1d∗1c1 + c1 · · · dld∗l cl + cl

)

(a1 + b1d∗1c1)

ω

...
(al + bld∗l cl)

ω




l+1

=




d∗1c1(a1 + b1d∗1c1)
ω

...
d∗l cl(al + bld∗l cl)

ω

∑1≤i≤l(did∗i ci + ci)(ai + bid∗i ci)
ω




l+1

= ∑
1≤i≤l

(did∗i ci + ci)(ai + bid∗i ci)
ω

= ∑
1≤i≤l

(d∗i ci)(ai + bid∗i ci)
ω

Thus, the first component is (by identity (3.12))

[
(Mω,l)z′

]
1
=

[
∑

1≤i≤l
(d∗i ci)(ai + bid∗i ci)

ω

]
1

= ∑
1≤i≤l

[(d∗i ci)(ai + bid∗i ci)
ω]1 = ∑

1≤i≤l
sitω

i = υ .

We can now conclude the following theorem.

Theorem 3.13. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉×S〈〈Σω〉〉 is equivalent to the
statements of Theorem 3.5:
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(s, υ) is component of a canonical solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉×
S〈〈Σω〉〉 in Greibach normal form.

Proof. The above statement trivially implies statement (v) of Theorem 3.5. By Corol-
lary 3.6 and Lemma 3.12, the statements of Theorem 3.5 imply the above statement.

3.4 Greibach Normal Form for ω-Algebraic Systems

For the following chapter, we need the Greibach normal form not only for mixed
ω-algebraic systems but also for ω-algebraic systems. So we show in this section a
specialization of Theorem 3.13 for ω-algebraic systems.

Similar to the definition for mixed ω-algebraic systems, an ω-algebraic system

y = p(y)

where {y1, . . . , yn} is a set of variables for the quemiring Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉, is in
Greibach normal form if

supp(pi(y)) ⊆ {ε} ∪ Σ ∪ ΣY ∪ ΣYY, for all 1 ≤ i ≤ n .

The main result of this chapter is the following.

Theorem 3.14. The following statement for (s, υ) ∈ S〈〈Σ∗〉〉×S〈〈Σω〉〉 is equivalent to the
statements of Theorem 3.5:
(s, υ) is component of a canonical solution of an ω-algebraic system over S〈〈Σ∗〉〉×S〈〈Σω〉〉
in Greibach normal form.

Proof. By Theorem 3.13, we can assume that (s, υ) is component of the tth canonical
solution of a mixed ω-algebraic system over S〈〈Σ∗〉〉×S〈〈Σω〉〉 in Greibach normal
form for a t ∈N. Let the mixed ω-algebraic system be given in the following form:

xi = pi + ∑
1≤j≤n

(pijx + qij)xj, for 1 ≤ i ≤ n , (>)

zi = ∑
1≤j≤m

(p′ijx + q′ij)zj, for 1 ≤ i ≤ m , (>>)

where

pij ∈ S〈Σ〉1×n, for 1 ≤ i, j ≤ n ,
p′ij ∈ S〈Σ〉1×n, for 1 ≤ i, j ≤ m ,

and

supp(pi) ⊆ {ε} ∪ Σ, supp(pijx) ⊆ ΣX, supp(qij) ⊆ Σ ,
supp(p′ijx) ⊆ ΣX, supp(q′ij) ⊆ Σ .
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Note that
pijx = ∑

1≤k≤n
(pij)kxk ;

we decided for this notation because of brevity, important especially in matrices.
For the remainder of the proof, consider integers k and l to be fixed such that the tth

canonical solution of (>), (>>) is (σ, ω) with σk = s and ωl = υ.
We will later need a simple implication: We can write the linear system (>>) as

z = P′mm(x)z ,

where

P′mm(x) =

 p′11x + q′11 · · · p′1mx + q′1m
... . . . ...

p′m1x + q′m1 · · · p′mmx + q′mm

 .

Note that t ≤ m. It follows that

ω = P′mm(σ)
ω,t. (3.13)

Now, we construct from (>), (>>) an ω-algebraic system (>>>) where the vari-
ables x are substituted by ȳ and z by ŷ. Additionally, we add a new equation and a new
variable ẏ to combine the kth component of the semiring part and the lth component of
the semimodule part:

ŷi = ∑
1≤j≤m

(p′ijȳ + q′ij)ŷj, for 1 ≤ i ≤ m ,

ȳi = pi + ∑
1≤j≤n

(pijȳ + qij)ȳj, for 1 ≤ i ≤ n ,

ẏ = pk + ∑
1≤j≤n

(pkjȳ + qkj)ȳj + ∑
1≤j≤m

(p′l jȳ + q′l j)ŷj .

(>>>)

Note that (>>>) is in Greibach normal form. Moreover, note that we order the
equations such that the first equations are those corresponding to the old equations
of variables zi. This ensures that the tth canonical solution still considers the correct
variables as Büchi-accepting.

Claim: The (m + n + 1)th component of the tth canonical solution of (>>>) is
(σk, ωl) = (s, υ).

We now compute this solution. The tth canonical solution of the ω-algebraic system
(>>>) is defined to be the tth canonical solution of the mixed ω-algebraic system
induced by (>>>). The corresponding induced mixed ω-algebraic system is given by
the algebraic system over Salg〈〈Σ∗〉〉

x̂i = ∑
1≤j≤m

(p′ij x̄ + q′ij)x̂j, for 1 ≤ i ≤ m ,

x̄i = pi + ∑
1≤j≤n

(pij x̄ + qij)x̄j, for 1 ≤ i ≤ n ,

ẋ = pk + ∑
1≤j≤n

(pkj x̄ + qkj)x̄j + ∑
1≤j≤m

(p′l j x̄ + q′l j)x̂j ,

(#)
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and the linear system over Salg〈〈Σω〉〉

ẑi = ∑
1≤j≤m

(p′ij x̄ + q′ij)ẑj + p′ij z̄, for 1 ≤ i ≤ m ,

z̄i = ∑
1≤j≤n

(pij x̄ + qij)z̄j + pij z̄, for 1 ≤ i ≤ n ,

ż = ∑
1≤j≤n

(pkj x̄ + qkj)z̄j + pkj z̄ + ∑
1≤j≤m

(p′l j x̄ + q′l j)ẑj + p′l j z̄ .

(##)

Claim: (0, . . . , 0; σ; σk) is the least solution of (#).
First, we prove that it is a solution by plugging it into the right sides of the equations.

We have for the first m equations, and for 1 ≤ i ≤ m,

∑
1≤j≤m

(p′ijσ + q′ij)0 = 0 .

Then for the second set of equations and 1 ≤ i ≤ n,

pi + ∑
1≤j≤n

(pijσ + qij)σj = σi ;

because σ is a solution of (>). Finally, we obtain by the same reason, for the last
equation,

pk + ∑
1≤j≤n

(pkjσ + qkj)σj + ∑
1≤j≤m

(p′l jσ + q′l j)0j = pk + ∑
1≤j≤n

(pkjσ + qkj)σj + 0

= σk .

The algebraic system (#) is strict and therefore has a unique solution. This means that
(0, . . . , 0; σ; σk) is also the least solution. This proves the claim.

Now consider the linear system (##). Let P′mm(x̄) be defined as above and let further

Pnn(x̄) =

p11 x̄ + q11 · · · p1n x̄ + q1n
... . . . ...

pn1 x̄ + qn1 · · · pnn x̄ + qnn

 ,

Rnn =

∑1≤j≤n(p1j)1 · · · ∑1≤j≤n(p1j)n
... . . . ...

∑1≤j≤n(pnj)1 · · · ∑1≤j≤n(pnj)n

 ,

R′mn =

∑1≤j≤m(p′1j)1 · · · ∑1≤j≤m(p′1j)n
... . . . ...

∑1≤j≤m(p′mj)1 · · · ∑1≤j≤m(p′mj)n

 .
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Note that for (##) and for 1 ≤ i ≤ m, we have

∑
1≤j≤m

p′ij z̄ = ∑
1≤j≤m

∑
1≤k≤n

(p′ij)k z̄k

= ∑
1≤k≤n

∑
1≤j≤m

(p′ij)k z̄k

=
(

∑
1≤j≤m

(p′ij)1, · · · , ∑
1≤j≤m

(p′ij)n

)
z̄

= (R′mn)i z̄ .

Analogously, we can prove ∑1≤j≤n pij z̄ = (Rnn)i z̄. We let

M(x̂, x̄, x) =

 P′mm(x̄) R′mn 0
0 Pnn(x̄) + Rnn 0

(P′mm(x̄))l (Pnn(x̄))k + (Rnn)k + (R′mn)l 0

 ,

then the linear system (##) can be written as

ẑ
z̄
z

 = M(x̂, x̄, x)

ẑ
z̄
z

 .

Now, we can plug the semiring part (0, σ, σk) of the solution into M. By Theorem 3.2,
the semimodule part of the canonical solution of (#), (##) is

M(0, σ, σk)
ω,t =

 ξω,t(
Pnn(σ) + Rnn 0

χ 0

)∗ ( 0
(P′mm(σ))l

)
ξω,t


with

χ = (Pnn(σ))k + (Rnn)k + (R′mn)l

and

ξ = P′mm(σ) +
(

R′mn 0
) (Pnn(σ) + Rnn 0

χ 0

)∗ ( 0
(P′mm(σ))l

)
= P′mm(σ) +

(
R′mn 0

) ( (Pnn(σ) + Rnn)∗ 0
χ(Pnn(σ) + Rnn)∗ 1

)(
0

(P′mm(σ))l

)
= P′mm(σ) +

(
R′mn(Pnn(σ) + Rnn)∗ 0

) ( 0
(P′mm(σ))l

)
= P′mm(σ) + 0 = P′mm(σ) .
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It follows that

M(0, σ, σk)
ω,t =

 P′mm(σ)
ω,t(

Pnn(σ) + Rnn 0
χ 0

)∗ ( 0
(P′mm(σ))l

)
P′mm(σ)

ω,t


=

 P′mm(σ)
ω,t(

(Pnn(σ) + Rnn)∗ 0
χ(Pnn(σ) + Rnn)∗ 1

)(
0

(P′mm(σ))l

)
P′mm(σ)

ω,t


=

 P′mm(σ)
ω,t(

0
(P′mm(σ))l

)
P′mm(σ)

ω,t


=

 P′mm(σ)
ω,t

0
(P′mm(σ))l P′mm(σ)

ω,t

 .

Now, we have for the last component(
M(0, σ, σk)

ω,t)
m+n+1 = (P′mm(σ))l P′mm(σ)

ω,t

=
(

P′mm(σ)P′mm(σ)
ω,t)

l

=
(

P′mm(σ)
ω,t)

l = ωl ,

where the third equality is by Theorem 5.5.1 of Ésik and Kuich (2007a) and the last
equality is by (3.13). In summary, the (n + m + 1)th component of the tth canonical
solution of (#), (##) is (σk, ωl) = (s, υ). As defined for ω-algebraic systems, it then
follows that also the tth canonical solution of (>>>) is (s, υ).

As the mixed ω-algebraic system in the preceding proof does not depend on the
previous discussion and since we proved that we can construct the Greibach normal
form when needed, we infer the following.

Corollary 3.15. Let (s, υ) be a component of a canonical solution of a mixed ω-algebraic
system over S〈〈Σ∗〉〉×S〈〈Σω〉〉.

Then we can construct an ω-algebraic system over S〈〈Σ∗〉〉×S〈〈Σω〉〉 (in Greibach normal
form) where (s, υ) is a component of a canonical solution.
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CHAPTER 4

Weighted Simple Pushdown Automata

This chapter investigates weighted simple pushdown automata. As these automata
specialize reset pushdown automata of Kuich and Salomaa (1986, Section 13) (see
also Ésik and Kuich, 2007a, pp. 96 ff.), weighted simple pushdown automata are
called simple reset pushdown automata in this chapter. Similarly, for infinite words,
weighted simple ω-pushdown automata are called simple ω-reset pushdown automata
in this chapter. These automata do not use ε-transitions and utilize only three simple
stack commands: popping a symbol, pushing a symbol or leaving the stack unaltered;
moreover, it is only possible to read the topmost stack symbol by popping it. Observe
that together with the restriction of not allowing ε-transitions, restrictions for the actions
on the stack are non-trivial.

We show that for every algebraic and for every ω-algebraic series r, there exists a
simple reset or a simple ω-reset pushdown automaton, respectively, with behavior r.
For this result we will need some restrictions on the weight structure.

The chapter is divided into two sections. We will first (Section 4.1) concentrate
on finite words. In Section 4.2, we will reuse these results to evaluate simple ω-reset
pushdown automata. All preliminaries are introduced in the preceding chapter, in
Section 3.1.

4.1 Finite Words

The goal of this section is to establish a weighted model of simple pushdown automata
on finite words. We will prove as the main result, that for every algebraic series
r ∈ Salg〈〈Σ∗〉〉, there exists a simple reset pushdown automaton with behavior r.

We will use simple reset pushdown automata in the next section, Section 4.2, to
evaluate the expressive power of simple ω-reset pushdown automata.

This section is structured as follows. Subsection 4.1.1 introduces pushdown matrices
that will later be used similarly to an adjacency matrix of the graph representing an
automaton. For weighted pushdown automata there exists already the notion of a reset
pushdown automaton (cf. Kuich and Salomaa, 1986) that starts and ends with an empty
pushdown tape and that naturally allows pushing onto an empty tape. We present
weighted simple pushdown automata therefore as a specialization of reset pushdown
automata. The same subsection, Subsection 4.1.1, also defines the corresponding reset
pushdown matrices and proves some basic properties.

The restrictions we discussed above are defined as simple reset pushdown matrices
in Subsection 4.1.2. Here we also prove some basic properties for these matrices.

63



Chapter 4 Weighted Simple Pushdown Automata

The last subsection, Subsection 4.1.3, defines how the matrix is used in a simple reset
pushdown automaton. Afterwards, we prove that simple reset pushdown automata
generate all algebraic series (i.e., weighted context-free languages, cf. Kuich and Salo-
maa, 1986). The proof starts with algebraic systems (cf. Kuich and Salomaa, 1986) in
Greibach normal form and constructs for every such system an equivalent simple reset
pushdown automaton. Additionally, we introduce a new normal form for algebraic
series.

This section is based on Droste, Dziadek and Kuich (2019a).

4.1.1 Reset Pushdown Matrices

Following Kuich and Salomaa (1986) and Kuich (1997), we introduce pushdown
transitions matrices (see also Ésik and Kuich, 2007a). These matrices can be considered
as adjacency matrices of graphs representing automata. A special form, the reset
pushdown matrices, is used for pushdown automata starting with an empty stack and
allowing the automaton to push onto the empty stack. Here, we are interested in simple
reset pushdown matrices. This simple form allows the automaton only to push one
symbol, to pop one symbol or to ignore the stack. The corresponding automata, the
simple reset pushdown automata are a generalization of the unweighted automata
used in Chapter 2. They do not use ε-transitions and do not allow the inspection of the
topmost stack symbol.

A matrix M ∈ (Sn×n)Γ∗×Γ∗ is called row-finite if {π′ | Mπ,π′ 6= 0} is finite for all
π ∈ Γ∗. We denote the identity matrix by E.

Let Γ be an alphabet, called pushdown alphabet, and let n ≥ 1. A matrix M̄ ∈
(Sn×n)Γ∗×Γ∗ is termed a pushdown matrix (with pushdown alphabet Γ and state set
{1, . . . , n}) if

(i) M̄ is row-finite;
(ii) for all π1, π2 ∈ Γ∗,

M̄π1,π2 =

{
M̄p,π, if there exist p ∈ Γ, π, π′ ∈ Γ∗ with π1 = pπ′ and π2 = ππ′,

0, otherwise.

Intuitively, here (ii) means that the infinite pushdown matrix M̄ is fully represented
already by the blocks M̄p,π where p ∈ Γ, π ∈ Γ∗, and (i) means that only finitely many
such blocks are nonzero.

In the sequel, S is assumed to be a complete starsemiring.
Let Γ be a pushdown alphabet and {1, . . . , n} for n ≥ 1 be a set of states.
A reset matrix MR ∈ (Sn×n)Γ∗×Γ∗ is a row-finite matrix such that

(MR)π1,π2 = 0 for π1, π2 ∈ Γ∗ with π1 6= ε .

A reset pushdown matrix M ∈ (Sn×n)Γ∗×Γ∗ is the sum of a reset matrix MR and a
pushdown matrix M̄,

M = MR + M̄ .
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Intuitively, a reset pushdown matrix is similar to a pushdown matrix (i.e., it models the
LIFO property of the pushdown tape) with the additional possibility to push onto the
empty stack, i.e., Mε,π is allowed to be nonzero. Note that the entries of reset pushdown
matrices are determined by finitely many values because it is row-finite and property
(ii) of pushdown matrices ensures that the value of Mpπ′,ππ′ is equal to (and therefore
can be derived from) Mp,π.

For the convenience of the reader, we recall the following result.

Theorem 4.1 (Corollary 2 of Droste, Ésik and Kuich, 2017). Let M̄ ∈ (Sn×n)Γ∗×Γ∗ be a
pushdown matrix. Then, for all π1, π2 ∈ Γ∗,

(M̄∗)π1π2,ε = (M̄∗)π1,ε(M̄∗)π2,ε .

Now we show

Theorem 4.2. Let M = MR + M̄ be a reset pushdown matrix. Then

(M∗)π,ε = (M̄∗)π,ε(M∗)ε,ε for π ∈ Γ∗ .

Proof. The proof is by induction on the length of π. The case π = ε is trivial. We
assume that Theorem 4.2 is proved for π ∈ Γ∗ and derive it for pπ with p ∈ Γ as
follows, where for t = 1 we have Mpπ,π1π = Mpπ,π:

(M∗)pπ,ε = ∑
t≥1

∑
π1,...,πt−1∈Γ+

Mpπ,π1π Mπ1π,π2π · · ·Mπt−1π,π(M∗)π,ε

= ∑
t≥1

∑
π1,...,πt−1∈Γ+

Mp,π1 Mπ1,π2 · · ·Mπt−1,ε(M∗)π,ε

=
(

∑
t≥1

(M̄t)p,ε
)
(M̄∗)π,ε(M∗)ε,ε

= (M̄∗)p,ε(M̄∗)π,ε(M∗)ε,ε

= (M̄∗)pπ,ε(M∗)ε,ε .

The last equality above is implied by Theorem 4.1.

Corollary 4.3. Let M = MR + M̄ be a reset pushdown matrix. Then

(M∗)p1...pk ,ε = (M̄∗)p1,ε · · · (M̄∗)pk ,ε(M∗)ε,ε ,

for p1, . . . , pk ∈ Γ (k ≥ 0).

Theorem 4.4. Let M = MR + M̄ be a reset pushdown matrix. Then the Sn×n-algebraic
system with variables xε, x̄p (p ∈ Γ)

xε = ∑
π∈Γ∗

Mε,π x̄πxε + E ,

x̄p = ∑
π∈Γ∗

M̄p,π x̄π, p ∈ Γ ,
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where x̄ε = E, x̄pπ = x̄p x̄π for p ∈ Γ and π ∈ Γ∗,
has a solution

xε = (M∗)ε,ε, x̄p = (M̄∗)p,ε, p ∈ Γ .

Proof. By Theorem 4.2, we obtain

(M∗)ε,ε = ∑
π∈Γ∗

Mε,π(M∗)π,ε + E

= ∑
π∈Γ∗

Mε,π(M̄∗)π,ε(M∗)ε,ε + E ,

and

(M̄∗)p,ε = ∑
π∈Γ∗

M̄p,π(M̄∗)π,ε .

By Theorem 4.1, we have x̄π = (M̄∗)π,ε for each π ∈ Γ∗. The result follows.

Corollary 4.5. Let S be a commutative complete starsemiring and Σ be an alphabet. If M ∈
((S〈Σ〉)n×n)Γ∗×Γ∗ is a reset pushdown matrix, then the algebraic system of Theorem 4.4 has a
unique solution.

Proof. The algebraic system is strict and thus has a unique solution; see Kuich and
Salomaa (1986, p. 302) for details.

Corollary 4.6. Let S be a commutative complete starsemiring and Σ be an alphabet. If M ∈
((S〈Σ〉)n×n)Γ∗×Γ∗ is a reset pushdown matrix, then the components of the unique solution of
the algebraic system of Theorem 4.4

(M∗)ε,ε, (M̄∗)p,ε, p ∈ Γ ,

are in (Salg〈〈Σ∗〉〉)n×n.

Proof. This follows from the definition of Salg〈〈Σ∗〉〉, see Kuich (1997, pp. 622–623) for
more information.

4.1.2 Simple Reset Pushdown Matrices

For the rest of this section, the complete starsemiring S is additionally assumed to be commu-
tative; and Σ denotes an alphabet.

A reset pushdown matrix M is called simple if M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ for some n ≥ 1
and for all p, p1 ∈ Γ,

Mp,ε, Mp,p = Mε,ε and Mp,p1 p = Mε,p1 ,

are the only blocks Mπ,π′ , where π ∈ {ε, p} and π′ ∈ Γ∗, that may be unequal to the
zero matrix 0.
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Hence, a simple reset pushdown matrix M is defined by its blocks Mε,ε and Mp,ε, Mε,p

(p ∈ Γ). Intuitively, the automata will only be allowed to ignore the stack (modeled by
Mε,ε), pop one symbol (Mp,ε) or push one symbol (Mε,p). Note also that the matrix
M ∈

(
(S〈Σ〉)n×n)Γ∗×Γ∗ forbids ε-transitions. Moreover, the equalities Mp,p = Mε,ε and

Mp,p1 p = Mε,p1 imply that the next transition does not depend on the topmost symbol
of the stack except when popping it (modeled by Mp,ε). An example of a simple reset
pushdown matrix can be found in Example 4.14.

If M is a simple reset pushdown matrix then the algebraic system of Theorem 4.4
has the form (4.1)

xε = Mε,εxε + ∑
p∈Γ

Mε,p x̄pxε + E ,

x̄p = M̄p,ε + M̄p,p x̄p + ∑
p1∈Γ

M̄p,p1 p x̄p1 x̄p , p ∈ Γ.
(4.1)

The variables of this system are xε, x̄p (p ∈ Γ). They are variables for matrices in
(S〈〈Σ∗〉〉)n×n.

Our next lemma states that for simple reset pushdown matrices, emptying the push-
down tape with contents p (i.e., applying (M̄∗)p,ε) has the same effect as emptying
first the pushdown tape with contents ε (i.e., applying (M∗)ε,ε) and then reading p in
a single move (i.e., applying Mp,ε). This is due to the fact that p can not be replaced by
any other pushdown symbol, but can only be erased. Note that the pushdown matrix
M̄ cannot continue calculations from the pushdown tape ε.

Lemma 4.7. Let M = MR + M̄ be a simple reset pushdown matrix. Then

(M̄∗)p,ε = (M∗)ε,ε Mp,ε .

Proof. We have

(M̄∗)p,ε = ∑
t≥0

∑
π1,...,πt−1∈Γ∗

M̄p,π1 p · · · M̄πt−1 p,p M̄p,ε

= ∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1 p · · ·Mπt−1 p,p Mp,ε

=
(

∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε
)

Mp,ε

= ∑
t≥0

(Mt)ε,ε Mp,ε = (M∗)ε,ε Mp,ε .

For t = 0 and t = 1 the respective summands are Mp,ε and Mp,p Mp,ε.
Observe that the bottom p can be never replaced by another pushdown symbol

p1 6= p; it can only be emptied. Also observe that we use Mp,p = Mε,ε in the third
equality.

Our next lemma is similar to Lemma 4.7. This time, a simple reset pushdown matrix
(M∗)p,ε) is considered. Therefore, in the end, it is possible to empty the pushdown
tape with contents ε (i.e., apply (M∗)ε,ε).

67



Chapter 4 Weighted Simple Pushdown Automata

Lemma 4.8. Let M be a simple reset pushdown matrix. Then

(M∗)p,ε = (M∗)ε,ε Mp,ε(M∗)ε,ε

Proof. We obtain

(M∗)p,ε = ∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1 p · · ·Mπt−1 p,p Mp,ε(M∗)ε,ε

=
(

∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε
)

Mp,ε(M∗)ε,ε

= (M∗)ε,ε Mp,ε(M∗)ε,ε .

Theorem 4.9. Let M be a simple reset pushdown matrix. Then (M∗)ε,ε is the unique solution
of

x = Mε,εx + ∑
p∈Γ

Mε,pxMp,εx + E .

Proof. By Theorem 4.4, ((M∗)ε,ε, ((M̄∗)p,ε)p∈Γ) is the solution of (4.1). Hence, we
obtain by Lemma 4.7

(M∗)ε,ε = Mε,ε(M∗)ε,ε + ∑
p∈Γ

Mε,p(M̄∗)p,ε(M∗)ε,ε + E

= Mε,ε(M∗)ε,ε + ∑
p∈Γ

Mε,p(M∗)ε,ε Mp,ε(M∗)ε,ε + E

This proves that (M∗)ε,ε is a solution of the equation of our theorem. Since M ∈
((S〈Σ〉)n×n)Γ∗×Γ∗ , this equation is strict and thus has a unique solution.

Now we consider the (S〈Σ ∪ {ε}〉)n×n-algebraic system of Theorem 4.9. Recall that
the variable x is a variable for (S〈〈Σ∗〉〉)n×n. So we substitute the n× n-matrix X =

(xi,j)1≤i,j≤n of variables for S〈〈Σ∗〉〉 for the variable x and we get the strict S〈Σ ∪ {ε}〉-
algebraic system

X = Mε,εX + ∑
p∈Γ

Mε,pXMp,εX + E . (4.2)

Let Y = {xi,j | 1 ≤ i, j ≤ n} be the set of the variables of (4.2). Then the support of the
right sides of equations of (4.2) is contained in {ε} ∪ ΣY ∪ ΣYΣY. Hence, this system
is of Greibach normal form type and at the same time of operator normal form type
(see Ésik and Kuich, 2007a, Section 2.2.4).

4.1.3 Simple Reset Pushdown Automata

A reset pushdown automaton starts its computations with empty tape and finishes
them with empty tape and final states.
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A reset pushdown automaton (with input alphabet Σ) A = (n, Γ, I, M, P) is given by
• a set of states {1, . . . , n}, n ≥ 1,
• a pushdown alphabet Γ,
• a reset pushdown matrix M ∈ ((S〈Σ ∪ {ε}〉)n×n)Γ∗×Γ∗ called transition matrix,
• a row vector I ∈ (S〈{ε}〉)1×n, called initial state vector,
• a column vector P ∈ (S〈{ε}〉)n×1, called final state vector.

The behavior ‖A‖ of a reset pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP .

A reset pushdown automaton A = (n, Γ, I, M, P) is called simple if M is a simple
reset pushdown matrix.

Given a series r ∈ Salg〈〈Σ∗〉〉, we want to construct a simple reset pushdown automa-
ton with behavior r. By Theorems 5.10 and 5.4 of Kuich (1997), r is a component of the
unique solution of a strict algebraic system in Greibach normal form.

Definition 4.10. An algebraic system xi = pi(x) (for 1 ≤ i ≤ n) is in Greibach normal
form if, for all 1 ≤ i ≤ n, we have

supp(pi(x)) ⊆ {ε} ∪ Σ ∪ ΣX ∪ ΣXX . H

We first consider the algebraic power series r to have (r, ε) = 0. So we assume
without loss of generality that r is the x1-component of the unique solution of the
algebraic system (4.3) with variables x1, . . . , xn

xi = pi(x), 1 ≤ i ≤ n,

of the form

xi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, axjxk)axjxk +

∑
1≤j≤n

∑
a∈Σ

(pi, axj)axj +

∑
a∈Σ

(pi, a)a .

(4.3)

We now show the construction of the simple reset pushdown automaton Am =

(n+1, Γ, Im, M, P) for 1 ≤ s ≤ n with r = ‖A1‖:
We let Γ = {x1, . . . , xn}; we also denote the state n+1 by f ; the entries of M of the
form (Mxk ,xk)i,j, (Mxk ,ε)i,j, (Mε,xk)i,j, (Mε,ε)i,j, (Mε,ε)i, f for 1 ≤ i, j, k ≤ n, that may be
unequal to 0 are

(Mε,xk)i,j = ∑
a∈Σ

(pi, axjxk)a ,

(Mxk ,xk)i,j = (Mε,ε)i,j = ∑
a∈Σ

(pi, axj)a ,

(Mxk ,ε)i,k = (Mxk ,xk)i, f = (Mε,ε)i, f = ∑
a∈Σ

(pi, a)a ;
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we further put (Im)m = ε, (Im)i = 0, for 1 ≤ i ≤ m− 1 and m + 1 ≤ i ≤ n + 1; finally
let Pf = ε and Pj = 0 for 1 ≤ j ≤ n.

Intuitively, the variables in the algebraic system are simulated by states in the simple
reset pushdown automaton Am. By the Greibach normal form, only two variables on
the right-hand side are allowed. The first is modeled directly by changing the state, the
second is pushed to the pushdown tape and the state is changed to it later when the
variable is popped again. The special final state f will only be used as the last state.

Note that (Mxk ,xk)i, f allows to change to the final state with a non-empty pushdown
tape. This is an artificial addition to fit the definition of simple reset pushdown matrices.
Even though the automaton can enter the final state too early, it can not continue from
there as it is a sink.

Observe that ‖Am‖ = Im(M∗)ε,εP = ((M∗)ε,ε)s, f for 1 ≤ s ≤ n. Subsequently we
will show that ‖A1‖ = r.

This simple reset pushdown matrix M is called the simple pushdown matrix induced
by the Greibach normal form (4.3). The simple reset pushdown automata Am, 1 ≤
s ≤ n, are called the simple reset pushdown automata induced by the Greibach normal
form (4.3).

The next lemma formalizes the meaning of the pushdown tape for induced simple
reset pushdown matrices. Intuitively, going from state j to the final state f and erasing
the variable xk from the pushdown tape on the way (i.e., applying ((M∗)xk ,ε)j, f ) has
the same effect as first going from state j to the final state f without changing the
pushdown tape (i.e., applying ((M∗)ε,ε)j, f ) and then restarting in state k (i.e., applying
((M∗)ε,ε)k, f ). This results from the definition of Am: popping a variable from the
pushdown tape and changing to its state has the same weight as changing to the final
state instead. It allows the automaton to process the variables in the algebraic system
individually.

Lemma 4.11. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3). Then, for all 1 ≤ j, k ≤ n,

((M∗)xk ,ε)j, f = ((M∗)ε,ε)j, f ((M∗)ε,ε)k, f .

Proof. We obtain

((M∗)ε,ε)j, f = ((M+)ε,ε)j, f = ((M∗M)ε,ε)j, f

= ∑
1≤t1≤ f

((M∗)ε,ε)j,t1(Mε,ε)t1, f + ∑
1≤t1≤ f

∑
1≤t≤n

((M∗)ε,xt)j,t1(Mxt,ε)t1, f

= ((M∗)ε,ε Mε,ε)j, f

since (Mxt,ε)t1, f = 0 for all 1 ≤ t1 ≤ f and 1 ≤ t ≤ n by our construction.
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We now obtain, by Lemma 4.8,

((M∗)xk ,ε)j, f = ∑
1≤t1,t2≤ f

((M∗)ε,ε)j,t1(Mxk ,ε)t1,t2((M∗)ε,ε)t2, f

= ∑
1≤t1≤ f

((M∗)ε,ε)j,t1(Mε,ε)t1, f ((M∗)ε,ε)k, f

= ((M∗)ε,ε Mε,ε)j, f ((M∗)ε,ε)k, f

= ((M∗)ε,ε)j, f ((M∗)ε,ε)k, f .

The second equality is implied by the fact that

(Mxk ,ε)t1,k = (Mε,ε)t1, f and

(Mxk ,ε)t1,t2 = 0 for t2 6= k .

Now we show that the constructed automata realize the algebraic system (4.3).

Theorem 4.12.

(‖A1‖, . . . , ‖An‖) = (((M∗)ε,ε)1, f , . . . , ((M∗)ε,ε)n, f )

is the unique solution of the algebraic system (4.3). In particular, r = ‖A1‖.

Proof. We obtain, for 1 ≤ i ≤ n, by substituting into the right sides of (4.3) and by
Lemma 4.11,

∑
1≤j,k≤n

∑
a∈Σ

(piaxjxk)a((M∗)ε,ε)j, f ((M∗)ε,ε)k, f +

∑
1≤j≤n

∑
a∈Σ

(pi, axj)a((M∗)ε,ε)j, f +∑
a∈Σ

(pi, a)a

= ∑
1≤j,k≤n

(Mε,xk)i,j((M∗)xk ,ε)j, f + ∑
1≤j≤n

(Mε,ε)i,j((M∗)ε,ε)j, f + (Mε,ε)i, f

= ∑
1≤k≤n

(Mε,xk(M∗)xk ,ε)i, f + (Mε,ε(M∗)ε,ε)i, f

= ((M+)ε,ε)i, f = ((M∗)ε,ε)i, f .

Here in the second equality, we have replaced (Mε,ε)i, f by (Mε,ε)i, f ((M∗)ε,ε) f , f , since
((M∗)ε,ε) f , f = ε; also note that (Mε,xt)i, f = 0. Since the algebraic system (4.3) is strict,
it has a unique solution. In particular, r = ‖A1‖.

Note that the automaton Am used in Theorem 4.12 is induced by the Greibach normal
form (4.3) for the series r with (r, ε) = 0. We now consider the second case.

If we are given a series r ∈ Salg〈〈Σ∗〉〉, where (r, ε) 6= 0, then we modify the reset
pushdown automaton A1 to obtain A′ = (n + 2, Γ, I′, M′, P′). The new state n + 2 is an
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S M

N T

B F

a ↓ S

b ↑ S

1a ↓ T
1a#

a ↓ T
a#

b ↑ T

b ↑ S

b ↑ Tb ↑ B

b ↑ B
b#

b#

a ↓ B

1a ↓ B

b ↑ B

Figure 4.1: Example 4.14: Simple reset pushdown automaton, where ↓ X means push
symbol X, ↑ X means pop X, and # leaves the stack unaltered. All shown transitions
have a weight equal to the natural number 0 except the two transitions reading letter a
and pushing B onto the stack that have weight 1. All other possible transitions have
weight −∞.

isolated state, i.e., no moves to n + 2 or from n + 2 are possible. This means that, for all
π1, π2 ∈ Γ∗,

M′π1,π2
=

(
Mπ1,π2 0

0 0

)
and

(M′∗)π1,π2 =

(
(M∗)π1,π2 0

0 δπ1,π2

)
,

where δπ1,π2 is the Kronecker delta. Moreover let I′ =
(

I1 ε
)

and P′ =
(

P
(r, ε)ε

)
.

Hence, we obtain

‖A′‖ = I′(M′∗)ε,εP′ = I1(M∗)ε,εP + (r, ε)ε = r .

This proves

Corollary 4.13. Let r ∈ Salg〈〈Σ∗〉〉. Then there exists a simple reset pushdown automaton
with behavior r.

Example 4.14. Consider the semiring N̄〈〈Σ∗〉〉 for the arctic semiring 〈N̄, max,+,
−∞, 0〉 with N̄ = N ∪ {−∞, ∞}. Analogously to Example 3.7, we let 0 = −∞ and
1 = 0 and we note that in the following, 1 stands for the natural number 1.

We define the algebraic system

S = aMS + 1aNT + 1aN T = aMT + aM

M = b + aMB N = b + 1aNB

B = b
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with the variables S, T, M, N, B. These variable facilitate reading the equations, but
to make it fit into equation (4.3), consider the variable mapping x1 = T, x2 = S, x3 =

N, x4 = M, x5 = B.
Now, the variable M derives a string anbn+1 for n ∈N. The variable N does the same

but at the same time produces the weight n. The variables S and T add another a.
Let L = {anbn | n ≥ 1}. In total, the second component (i.e., with S being the start

variable) of the least solution is u with (u, an1 bn1 an2 bn2 . . . ank bnk) = max ni for k ≥ 1
and (u, w) = −∞ for w /∈ L+.

From this, we can construct a simple reset pushdown automaton A2 = (n, Γ, I, M, P)
as shown in Figure 4.1. Thus, we have n = 6, Γ = {T, S, N, M, B}. The initial state
vector is I2 = ε and Ii = 0 for i 6= 2. The final state vector is P6 = ε and Pi = 0 for i 6= 6.
The simple reset pushdown matrix is defined as

M =



Mε,ε Mε,T Mε,S Mε,N Mε,M Mε,B · · ·
MT,ε Mε,ε 0 0 0 0 · · ·
MS,ε 0 Mε,ε 0 0 0 · · ·
MN,ε 0 0 Mε,ε 0 0 · · ·
MM,ε 0 0 0 Mε,ε 0 · · ·
MB,ε 0 0 0 0 Mε,ε · · ·

...
...

...
...

...
... . . .


,

with, for instance

Mε,ε =



0 0 0 a 0 0

0 0 1a 0 0 0

0 0 0 0 0 0

0 0 0 0 0 b
0 0 0 0 0 b
0 0 0 0 0 0

 and Mε,B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1a 0 0 0

0 0 0 a 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 .

The rest of the matrix M can be inferred by the rules of pushdown matrices. The
behavior ‖A2‖ is equal to the second component of the least solution of the algebraic
system above. O

Theorem 4.12 in connection with Theorem 4.9 yields a new normal form for algebraic
power series.

Theorem 4.15. Let r ∈ Salg〈〈Σ∗〉〉 with (r, ε) = 0. Then for some n ≥ 2, there exist matrices
M0, M1,t, M2,t ∈ (S〈Σ〉)n×n, 1 ≤ t ≤ n− 1 such that r is the (1, n)-component of the unique
solution of the algebraic system

X = M0X + ∑
1≤t≤n−1

M1,tXM2,tX + E ,

where X is an n× n-matrix of variables.
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Proof. Assume that r equals the first component of the unique solution of the algebraic
system (4.3) with n− 1 variables x1, . . . , xn−1. Let M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ , with Γ =

{x1, . . . , xn−1}, be the simple pushdown matrix induced by (4.3). Then by Theorem 4.12,
((M∗)ε,ε)1,n is the first component of the solution of (4.3) and r = ((M∗)ε,ε)1,n.

By Theorem 4.9, (M∗)ε,ε is the solution of equation (4.2). Let now M0 = Mε,ε,
M1,t = Mε,xt and M2,t = Mxt,ε for 1 ≤ t ≤ n− 1.

Then equation (4.2) now reads

X = M0X + ∑
1≤t≤n−1

M1,tXM2,tX + E (4.4)

and r is the (1, n)-component of its unique solution.

In language theory, the restricted Dyck languages D′∗n (n ≥ 1) are formed of the words
over n pairs of associated parentheses which are “well-formed” in the usual sense.
Here a word is considered to be “well-formed” iff successive deletions of subwords of
associated parentheses not containing any further parentheses, say (, ), [, ], . . . yield
the empty word. By Theorem II. 3.7. of Berstel (1979), D′∗n (n ≥ 1) is generated by the
context-free grammar with productions

x → ε, x → akxākx, 1 ≤ k ≤ n .

Here ak and āk are the pairs of associated parentheses. By Theorem VII. 1.2. of Berstel
(1979), any of the languages D′∗n (n ≥ 2) is a cone generator of the principal cone of
context-free languages.

These results were transferred by Kuich and Salomaa (1986) to algebraic power
series over commutative semirings S. The restricted Dyck series D′∗n (n ≥ 1) are now the
unique solutions of the strict algebraic systems

x = ∑
1≤k≤n

akxākx + ε

and D′∗2 , and hence D′∗n for n ≥ 2, are cone generators of the principal cone Salg〈〈Σ∗∞〉〉
of algebraic power series. (See Theorem 13.15 of Kuich and Salomaa, 1986.)

In Example 14.3 of Kuich and Salomaa (1986), it is described how a “master sys-
tem” generates a normal form for algebraic system. The “master system” generating
equation (4.4) reads now, for a given n ≥ 2,

x = ax + ∑
1≤k≤n−1

akxākx + ε .

The important difference to the normal form given in this Example 14.3 is that now
all M-matrices contain no ε-terms.
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4.2 Infinite Words

This section evaluates the expressive power of weighted simple pushdown automata
of infinite words, i.e., simple ω-reset pushdown automata. In our main result of this
section, we show that these simple ω-reset pushdown automata recognize all weighted
ω-context-free languages.

For our proof, we use that ω-algebraic systems can be brought into Greibach normal
form as shown in Chapter 3. Our construction of simple ω-reset pushdown automata
is deduced from the construction in Section 4.1.

This automaton model will be needed in Chapter 5 for an equivalence result between
weighted ω-context-free languages and weighted logical formalisms for infinite words.

In Subsection 4.2.1, we describe basic properties of reset pushdown matrices if
applied infinitely many times. The results described there are extensions of the results
given in Subsections 4.1.1 and 4.1.2.

Simple ω-reset pushdown automata are introduced in Subsection 4.2.2. The main
result of this subsection and of the whole chapter is that for each ω-algebraic series r it is
possible to construct a simple ω-reset pushdown automaton with behavior r. The proof
of this main result is performed by the following proof method using the uniqueness of
lth canonical solutions of ω-algebraic systems: The proof that each of two expressions
is the mth component of the lth canonical solution implies the equality of these two
expressions. (Compare this with the proof method in continuous semirings: The proof
that each of two expressions is the mth component of the least solution of an algebraic
system implies the equality of these two expressions.) We consider an ω-algebraic
series that is the mth component of the lth canonical solution of an ω-algebraic system
in Greibach normal form and construct a simple ω-reset pushdown automaton whose
moves depend only on the coefficients of this Greibach normal form. We prove that
the behavior of this simple ω-reset pushdown automaton equals the mth component of
the lth canonical solution of this Greibach normal form. Hence, we conclude that for
each ω-algebraic series r we can construct a simple ω-reset pushdown automaton with
behavior r.

This section is based on Droste, Dziadek and Kuich (2019b, 2020c).

4.2.1 Infinite Applications of Simple Reset Pushdown Matrices

In this subsection we prove some results for infinite applications of simple reset push-
down matrices.

In this section, (S, V) is a complete semiring-semimodule pair.
We will use sets Pl comprising infinite sequences over {1, . . . , n} as defined by Droste,

Ésik and Kuich (2017):

Pl = {(j1, j2, . . . ) ∈ {1, . . . , n}ω | jt ≤ l for infinitely many t ≥ 1} .
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We obtain, for a reset pushdown matrix M ∈ (Sn×n)Γ∗×Γ∗ , π ∈ Γ+ and for 1 ≤ j ≤ n,

((Mω,l)π)j = ∑
π1,π2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mπ,π1)j,j1(Mπ1,π2)j1,j2(Mπ2,π3)j2,j3 · · · . (4.5)

Observe the following summation identity: Assume that M1, M2, . . . are matrices in
Sn×n. Then for 0 ≤ l ≤ n, 1 ≤ j ≤ n, and m ≥ 1, we have

∑
(j1,j2,... )∈Pl

(M1)j,j1(M2)j1,j2 · · · = ∑
1≤j1,...,jm≤n

(M1)j,j1 · · · (Mm)jm−1,jm ∑
(jm+1,jm+2,... )∈Pl

(Mm+1)jm,jm+1 · · · .

By Theorem 5.5.1 of Ésik and Kuich (2007a) we obtain, for a finite matrix M and
for 0 ≤ l ≤ n, the equality MMω,l = Mω,l . By Theorem 6 of Droste, Ésik and Kuich
(2017), we have a similar result for pushdown matrices. We will now show the same
equality for a reset pushdown matrix M.

Theorem 4.16. Let (S, V) be a complete semiring-semimodule pair and let further M ∈
(Sn×n)Γ∗×Γ∗ be a reset pushdown transition matrix. Then, for 0 ≤ l ≤ n,

Mω,l = MMω,l .

Proof. We obtain for π0 ∈ Γ∗ and 1 ≤ j0 ≤ n,

((MMω,l)π0)j0 = ∑
π∈Γ∗

∑
1≤j≤n

(Mπ0,π)j0,j ∑
π1,π2,...∈Γ∗

∑
(j1,j2... )∈Pl

(Mπ,π1)j,j1(Mπ1,π2)j1,j2 . . .

= ∑
π,π1,π2 ...∈Γ∗

∑
(j,j1,j2,... )∈Pl

(Mπ0,π)j0,j(Mπ,π1)j,j1(Mπ1,π2)j1,j2 . . .

= ((Mω,l)π0)j0 .

The following two theorems compare reset pushdown matrices to pushdown ma-
trices in the course of an infinite application. They state that either the topmost stack
symbol p is popped or the reset pushdown matrix behaves similar to pushdown matri-
ces.

Theorem 4.17. Let (S, V) be a complete semiring-semimodule pair. Let M be a reset pushdown
matrix. Then

(Mω)p = (M̄ω)p + (M̄∗)p,ε(Mω)ε, for any p ∈ Γ .

Proof. We obtain, for p ∈ Γ,

(Mω)p = ∑
π1,π2,···∈Γ+

Mp,π1 Mπ1,π2 · · ·+ ∑
t≥1

∑
π1,...,πt−1∈Γ+

Mp,π1 · · ·Mπt−1,ε(Mω)ε

= (M̄ω)p + ∑
t≥1

(M̄t)p,ε(Mω)ε

= (M̄ω)p + (M̄∗)p,ε(Mω)ε .
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Theorem 4.18. Let (S, V) be a complete semiring-semimodule pair. Let M be a reset pushdown
matrix and 0 ≤ l ≤ n. Then

(Mω,l)p = (M̄ω,l)p + (M̄∗)p,ε(Mω,l)ε, for any p ∈ Γ .

Proof. We use the proof of Theorem 4.17. We obtain, for p ∈ Γ, 0 ≤ l ≤ n and 1 ≤ j ≤ n,

((Mω,l)p)j = ∑
π1,π2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mp,π1)j,j1(Mπ1,π2)j1,j2 · · ·

= ∑
π1,π2,···∈Γ+

∑
(j1,j2,... )∈Pl

(Mp,π1)j,j1(Mπ1,π2)j1,j2 · · ·

+ ∑
t≥1

∑
π1,...,πt−1∈Γ+

πt+1,πt+2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mp,π1)j,j1 · · · (Mπt−1,ε)jt−1,jt ·

(Mε,πt+1)jt,jt+1(Mπt+1,πt+2)jt+1,jt+2 · · ·
= ((M̄ω,l)p)j + ∑

t≥1
∑

π1,...,πt−1∈Γ+
∑

1≤j1,...,jt≤n
(Mp,π1)j,j1 · · · (Mπt−1,ε)jt−1,jt ·

∑
πt+1,πt+2,···∈Γ∗

∑
(jt+1,jt+2,... )∈Pl

(Mε,πt+1)jt,jt+1(Mπt+1,πt+2)jt+1,jt+2 · · ·

= ((M̄ω,l)p)j + ∑
t≥1

∑
1≤j′≤n

((M̄t)p,ε)j,j′((Mω,l)ε)j′

= ((M̄ω,l)p + (M̄∗)p,ε(Mω,l)ε)j .

For simple reset pushdown matrices, the following two lemmas state that infinite
paths starting with symbol p on the pushdown tape can either ignore that symbol or
pop it and then continue with an infinite path from the empty tape.

Lemma 4.19. Let (S, V) be a complete semiring-semimodule pair. Let M be a simple reset
pushdown matrix. Then, for p ∈ Γ,

(Mω)p = (Mω)ε + (M∗)ε,ε Mp,ε(Mω)ε .

Proof. We obtain, for p ∈ Γ,

(Mω)p = ∑
π1,π2,···∈Γ∗

Mp,π1 Mπ1,π2 · · ·

= ∑
π1,π2,···∈Γ∗

Mp,π1 p Mπ1 p,π2 p · · ·+ ∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1 p · · ·Mπt−1 p,p Mp,ε(Mω)ε

= (Mω)ε +
(

∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε
)

Mp,ε(Mω)ε

= (Mω)ε + ∑
t≥0

(Mt)ε,ε Mp,ε(Mω)ε

= (Mω)ε + (M∗)ε,ε Mp,ε(Mω)ε .

Lemma 4.20. Let (S, V) be a complete semiring-semimodule pair. Let M be a simple reset
pushdown matrix. Then, for p ∈ Γ and 0 ≤ l ≤ n,

(Mω,l)p = (Mω,l)ε + (M∗)ε,ε Mp,ε(Mω,l)ε .
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Proof. We use the proof of Lemma 4.19. We obtain, for p ∈ Γ, 0 ≤ l ≤ n and 1 ≤ j ≤ n,

((Mω,l)p)j = ∑
π1,π2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mp,π1)j,j1(Mπ1,π2)j1,j2 · · ·

= ∑
π1,π2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mp,π1 p)j,j1(Mπ1 p,π2 p)j1,j2 · · ·

+ ∑
t≥0

∑
π1,π2,···∈Γ∗

∑
(j1,j2,... )∈Pl

(Mp,π1 p)j,j1 · · · (Mπt−1 p,p)jt−1,jt ·

(Mp,ε)jt,jt+1(Mε,πt+2)jt+1,jt+2(Mπt+2,πt+3)jt+2,jt+3 · · ·
= ((Mω,l)ε)j

+ ∑
t≥0

∑
π1,...,πt−1∈Γ∗

∑
1≤j1,...,jt+1≤n

(Mp,π1 p)j,j1 · · · (Mπt−1 p,p)jt−1,jt(Mp,ε)jt,jt+1 ·

∑
πt+2,πt+3,···∈Γ∗

∑
(jt+2,jt+3,... )∈Pl

(Mε,πt+2)jt+1,jt+2(Mπt+2,πt+3)jt+2,jt+3 · · ·

= ((Mω,l)ε)j + ∑
t≥0

∑
π1,...,πt−1∈Γ∗

∑
1≤j1,...,jt+1≤n

(Mε,π1)j,j1 · · ·(Mπt−1,ε)jt−1,jt ·

(Mp,ε)jt,jt+1((Mω,l)ε)jt+1

= ((Mω)ε)j + ∑
t≥0

∑
1≤j′,j′′≤n

((Mt)ε,ε)j,j′(Mp,ε)j′,j′′((Mω,l)ε)j′′

= ((Mω)ε + (M∗)ε,ε Mp,ε(Mω,l)ε)j .

4.2.2 Simple ω-Reset Pushdown Automata

In this section, we introduce simple ω-reset pushdown automata, and the main theorem
will show that they can recognize all ω-algebraic series.

An ω-reset pushdown automaton

A = (n, Γ, I, M, P, l)

is given by a reset pushdown automaton (n, Γ, I, M, P) and an integer l with 0 ≤ l ≤ n,
which indicates that 1, . . . , l are the repeated states of A. The behavior ‖A‖ of this
ω-reset pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP + I(Mω,l)ε .

The ω-reset pushdown automaton A = (n, Γ, I, M, P, l) is called simple if M is a simple
reset pushdown matrix.

Example 4.21. Figure 4.2 shows a simple ω-reset pushdown automatonA = (4, Γ, I, M,
P, 1) over the quemiring N∞〈〈Σ∗〉〉 ×N∞〈〈Σω〉〉 for the tropical semiring 〈N∞, min,
+, 0 = ∞, 1 = 0〉 with Σ = {a, b, c}, Γ = {Z0, X}, I2 = 0, Ii = ∞ for i 6= 2 and Pi = ∞
for all 1 ≤ i ≤ 4. Then the adjacency matrix M of the automaton shown in Figure 4.2 is
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2 3 4 1
a, (↓, Z0) : 1 b, (↑, X) b, (↑, Z0)

a, (↓, X) : 1 b, (↑, X) c, #

c, #
b, (↑, Z0)

Figure 4.2: Example 4.21: Simple ω-reset pushdown automaton, where (↓, X) means
push symbol X, (↑, X) means pop X, and # leaves the stack unaltered. All transitions
shown have a weight equal to the natural number 0 except the two transitions reading
letter a and pushing a symbol onto the stack that have weight 1. All other possible
transitions have weight ∞.

a simple reset pushdown matrix. As an indication, M is defined with (Mε,ε)1,1 = 0c,
(Mε,ε)2,1 = 0c, (Mε,Z0)2,3 = 1a, etc., resulting in e.g.,

Mε,ε =


0c 0 0 0

0c 0 0 0

0 0 0 0

0 0 0 0

 and finally M =


Mε,ε Mε,Z0 Mε,X · · ·
MZ0,ε Mε,ε 0 · · ·
MX,ε 0 Mε,ε · · ·

...
...

... . . .

 ,

where the excluded part of M can be derived from the rules of pushdown and simple
reset pushdown matrices. The automaton A has the behavior anbncω 7→ n, similar to
the mixed ω-algebraic system in Example 3.4. O

Example 4.22. Reconsider Example 4.14. We define the simple ω-reset pushdown
automaton A2 = (6, Γ, I, M, P, 1) where we assume the state ordering T, S, N, M, B, F
to make state T Büchi-accepting. The behavior in the semiring part is equal to before; the
behavior in the semimodule part is u with (u, an1 bn1 an2 bn2 . . .) = max ni and (u, w) =

−∞ for w /∈ {anbn | n ≥ 1}ω. O

Example 4.23. Consider the ω-algebraic system

y1 = a + cy1

y2 = ay1y2 + ay1 .
(4.6)

We will consider the second component of the first canonical solution, i.e., variable y1

is Büchi-accepting and variable y2 is the start variable.
The ω-algebraic system induces the following mixed ω-algebraic system

x1 = a + cx1 z1 = cz1

x2 = ax1x2 + ax1 z2 = az1 + ax1z2 .
(4.7)

The least solution of x = p(x) is

σ =

(
c∗a

(ac∗a)+

)
.
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Now, we write the linear system z = ρ(σ)z in the matrix form and compute the first
canonical solution.

ρ(σ)ω,1 =

(
c 0
a a(c∗a)

)ω,1

=

(
(c + 0(aa)∗a)ω

(ac∗a)∗a(c + 0(aa)∗a)ω

)
=

(
cω

(ac∗a)∗acω

)
=:

(
ω

(1)
1

ω
(1)
2

)
= ω(1)

Note that the second component, ω
(1)
2 , does not contain the ω-words (ac∗a)ω even

though for an unweighted ω-context-free grammar corresponding to (4.6), the deriva-
tion

y2 → ay1y2 → (aa)y2 → (aa)ay1y2 → (aa)2y2 →ω aω

would be successful even with only y1 Büchi-accepting. The difference is due to the
fact that y1 is not significant in the ω-algebraic system above because it is exchanged by
x1 in the derivation (for more information, see Ésik and Kuich, 2007a, pp. 140 ff.).

Now, we look at the simple ω-reset pushdown automaton induced by the ω-algebraic
system (4.6):

2 1 f

a, #
a, (↓, y2)

a, (↑, y2)

a, #

c, #

The behavior of this automaton is

(((M∗)ε,ε)1, f , ((M∗)ε,ε)2, f ; ((Mω,1)ε)1, ((Mω,1)ε)2)

= ( c∗a, (ac∗a)+; cω, (ac∗a)∗acω + (ac∗a)ω)

Here, the first two components are equal to σ, as desired. But the last component
differs from ω

(1)
2 ; the last component is however equal to the behavior of unweighted

ω-context-free grammars.
Note that the desired component ω

(1)
2 = (ac∗a)∗acω is not recognized by this automa-

ton, even when changing the Büchi-accepting states. If no states are Büchi-accepting,
the behavior is 0, if all of them are Büchi-accepting, we have the same behavior as above.
If only state 2 is Büchi-accepting (can be achieved by renaming), we only recognize
(ac∗a)ω.

We now propose a different construction; this new construction models exactly the
behavior of ω-algebraic systems. The following is the simple ω-reset pushdown au-
tomaton induced by the mixed ω-algebraic system (4.7); this new construction will
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be defined after the example. Intuitively, the construction is similar to the old con-
struction but it differentiates between variables x and z; it therefore uses the states
x1, . . . , xn, z1, . . . , zn:

z2

z1

x1

x2

f

a, #
a, (↓, X2)

a, (↑, X2)

a, #

c, #

a, #

a, (↓, Z2)

a, (↑, Z2)

c, #

This simple ω-reset pushdown automaton has exactly the behavior (σ, ω(1)). This
means, if only z1 is Büchi-accepting, then the automaton does not allow the run (ac∗a)ω.

The rest of the chapter will show that in general, the lth canonical solution of a mixed
ω-algebraic system x = p(x), z = ρ(x)z is exactly the behavior of the simple ω-reset
pushdown automaton induced by x = p(x), z = ρ(x)z. O

Given a series r ∈ Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉, we want to construct a simple ω-reset
pushdown automaton with behavior r. By Theorem 3.14 and Theorem 3.5, r is a
component of a canonical solution of an ω-algebraic system (4.8) (compare this to the
algebraic system (4.3)) in Greibach normal form over the quemiring S〈〈Σ∗〉〉×S〈〈Σω〉〉,

yi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)ayjyk+

∑
1≤j≤n

∑
a∈Σ

(pi, ayj)ayj+

∑
a∈Σ

(pi, a)a .

(4.8)

The variables of this system are yi, (1 ≤ i ≤ n); they are variables for S〈〈Σ∗〉〉×
S〈〈Σω〉〉. The system (4.8) induces the following mixed ω-algebraic system:

xi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)axjxk+

∑
1≤j≤n

∑
a∈Σ

(pi, ayj)axj+

∑
a∈Σ

(pi, a)a .

(4.3)

and

zi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, ayjyk)a(zj + xjzk) + ∑
1≤j≤n

∑
a∈Σ

(pi, ayj)azj (4.9)
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But this system hides information, for instance, yjyk will never be derived by two
consecutive variables zjzk of S〈〈Σω〉〉. Our new construction is therefore based on the
following mixed ω-algebraic system that can be gained from the last system (4.3), (4.9)
by renaming:

xi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, axjxk)axjxk+

∑
1≤j≤n

∑
a∈Σ

(pi, axj)axj+

∑
a∈Σ

(pi, a)a .

(4.3)

and

zi = ∑
1≤j,k≤n

∑
a∈Σ

(pi, axjzk)axjzk + ∑
1≤j≤n

∑
a∈Σ

(pi, azj)azj (4.10)

We now want to construct a simple ω-reset pushdown automaton. Here, we intro-
duce our new construction. Let Al

m = (2n + 1, Γ, Im, M, P, l), 1 ≤ m ≤ n, 0 ≤ l ≤ n, be
defined as follows:
We let Γ = {X1, . . . , Xn, Z1, . . . , Zn}; we denote the states 1, . . . , 2n + 1 by z1, . . . , zn,
x1, . . . , xn, f ; the entries of M of the form (Mπ,π′)v,v′ for 1 ≤ v, v′ ≤ 2n + 1 and for
π, π′ ∈ Γ∗ with |π|, |π′| ≤ 1 that may be unequal to 0 are

(Mε,Xk)xi ,xj = ∑
a∈Σ

(pi, axjxk)a ,

(MZk ,Zk)xi ,xj = (MXk ,Xk)xi ,xj = (Mε,ε)xi ,xj = ∑
a∈Σ

(pi, axj)a ,

(MZk ,ε)xi ,zk = (MXk ,ε)xi ,xk = (MZk ,Zk)xi , f = (MXk ,Xk)xi , f = (Mε,ε)xi , f = ∑
a∈Σ

(pi, a)a ,

(MZk ,Zk)zi ,zj = (MXk ,Xk)zi ,zj = (Mε,ε)zi ,zj = ∑
a∈Σ

(pi, azj)a ,

(Mε,Zk)zi ,xj = ∑
a∈Σ

(pi, axjzk)a ,

for 1 ≤ i, j, k ≤ n; we further put (Im)xm = (Im)zm = ε, and (Im)xi = (Im)zi = 0 for
1 ≤ i ≤ m− 1 and m + 1 ≤ i ≤ n and (Im) f = 0; finally let Pf = ε and Pj = 0 for
1 ≤ j ≤ 2n;

In the following, we assume that r ∈ Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉 is the mth component of
the lth canonical solution of (4.8). We want to show that for the lth canonical solution
τ = (σ, ω) of (4.3), (4.10), and therefore also of (4.8), we have τm = σm + ωm = ‖Al

m‖.
This simple reset pushdown matrix M is called the simple reset pushdown matrix

induced by the Greibach normal form (4.3), (4.10). The simple ω-reset pushdown
automata Al

m (1 ≤ m ≤ n, 0 ≤ l ≤ n) are called the simple ω-reset pushdown
automata induced by the Greibach normal form (4.3), (4.10).

For the rest of the chapter, we will use the following notation (cf. Kuich and Salomaa,
1986, p. 179). Note that M ∈ (Sk×k)Γ∗×Γ∗ for k = 2n + 1. By isomorphism, we can
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transform this into M̂ ∈ (SΓ∗×Γ∗)k×k. We then have (Mπ,π′)v,v′ = (M̂v,v′)π,π′ for π, π′ ∈
Γ∗ and 1 ≤ v, v′ ≤ 2n + 1. (By the notation 1 ≤ v ≤ 2n + 1, we mean v can be any of
the states z1, . . . , zn, x1, . . . , xn, f .)

Example 4.24. This notation allows us to add up matrices with suitable pushdown
indexes while still keeping the information of the states. For instance, note that

∑
1≤k≤n

∑
π∈Γ∗

(M̂zi ,xk)ε,π(M̂xk ,zj)π,ε = ∑
1≤k≤n

(
M̂zi ,xk M̂xk ,zj

)
ε,ε .

Now consider the term

∑
1≤k≤n

∑
π∈Γ∗

(Mε,π)zi ,xk(Mπ,ε)xk ,zj ,

which cannot be simplified because ∑π∈Γ∗(Mε,π Mπ,ε)zi ,zj does no longer hold the in-
formation that the path passes only through states xi, i.e., it contains also the path
(Mε,π)zi ,zk(Mπ,ε)zk ,zj (for all 1 ≤ k ≤ n). In the proofs below, we will specifically need
to distinguish paths that pass through states xi and those that pass through states zi

as in the mixed ω-algebraic system, we also distinguish between variables xi for finite
derivations and variables zi for infinite derivations. O

Lemma 4.25. Let M ∈ (Sk×k)Γ∗×Γ∗ be a reset pushdown matrix. Then,

M̂∗ = M̂
∗ .

Proof. For 1 ≤ v, v′ ≤ m and for π, π′ ∈ Γ∗, we obtain

((M̂∗)v,v′)π,π′ = ((M∗)π,π′)v,v′

= ∑
n≥0

((Mn)π,π′)v,v′

= ∑
n≥0

((M̂
n
)v,v′)π,π′

= ((M̂
∗
)v,v′)π,π′ .

Similarly, we need the above result for another operator.

Lemma 4.26. Let M ∈ (Sk×k)Γ∗×Γ∗ be a reset pushdown matrix. Then, for 1 ≤ l ≤ k,

M̂ω,l = M̂
ω,l .

Proof. For 1 ≤ v ≤ k and for π ∈ Γ∗, we obtain

((M̂ω,l)v)π = ((Mω,l)π)v

= ∑
π1,π2,...∈Γ∗

∑
(v1,v2,...)∈Pl

(Mπ,π1)v,v1(Mπ1,π2)v1,v2(Mπ2,π3)v2,v3 · · ·

= ∑
π1,π2,...∈Γ∗

∑
(v1,v2,...)∈Pl

(M̂v,v1)π,π1(M̂v1,v2)π1,π2(M̂v2,v3)π2,π3 · · ·

= ((M̂
ω,l

)v)π .
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Let M be a simple reset pushdown matrix induced by the Greibach normal form (4.3),
(4.10). We define some blocks of the matrix M̂ to make the following argumentation
easier. We take the idea of the above-mentioned isomorphism and divide M̂ like

M̂ =

M̂z,z M̂z,x 0
M̂x,z M̂x,x M̂x, f

0 0 0

 , (4.11)

where the respective blocks are defined as

M̂z,z =

M̂z1,z1 · · · M̂z1,zn
... . . . ...

M̂zn,z1 · · · M̂zn,zn

 , M̂z,x =

M̂z1,x1 · · · M̂z1,xn
... . . . ...

M̂zn,x1 · · · M̂zn,xn

 ,

M̂x,z =

M̂x1,z1 · · · M̂x1,zn
... . . . ...

M̂xn,z1 · · · M̂xn,zn

 , M̂x,x =

M̂x1,x1 · · · M̂x1,xn
... . . . ...

M̂xn,x1 · · · M̂xn,xn

 , M̂x, f =

M̂x1, f
...

M̂xn, f

 ,

and where each M̂v,v′ ∈ SΓ∗×Γ∗ for 1 ≤ v, v′ ≤ 2n + 1. For notational convenience, we
also set

M̂zi ,x =
(

M̂zi ,x1 · · · M̂zi ,xn

)
, M̂x,zi =

M̂x1,zi
...

M̂xn,zi

 .

Note that we have not defined the blocks M̂z, f , M̂ f ,z, M̂ f ,x and M̂ f , f as they would
all be zero by our construction for simple reset pushdown matrices induced by the
Greibach normal form (4.3), (4.10).

Analogously, let Mz,z, Mz,x, Mx,z, Mx,x, Mx, f ∈ (S(2n+1)×(2n+1))Γ∗×Γ∗ be the isomor-
phic copy of M̂z,z, M̂z,x, M̂x,z, M̂x,x, M̂x, f , respectively. Then, for u, v ∈ {x, z} and
for π, π′ ∈ Γ∗, the matrix (Mu,v)π,π′ is Mπ,π′ restricted to the variables ui, vj (for
1 ≤ i, j ≤ n). Similarly, Mx, f is M restricted to variables xi, f (for 1 ≤ i ≤ n). For
instance, (M̂x,x)∗ and equally (Mx,x)∗ consider only paths passing through states xi

and no paths through yi or f (for 1 ≤ i ≤ n). Their only difference is the order of
indexes.

The following theorem computes the behavior of induced simple ω-reset pushdown
automata.

Theorem 4.27. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10). Then, for all 1 ≤ i ≤ n and 0 ≤ l ≤ n,(

(Mω,l)ε

)
xi
=
(
(Mω,l)ε

)
f = 0 ,

and (
(Mω,l)ε

)
zi
=
(((

Mz,z + Mz,x(M∗)x,x Mx,z
)ω,l)

ε

)
i
.
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Proof. For the matrix M, we have, by above notation (4.11),

M̂ =

M̂z,z M̂z,x 0
M̂x,z M̂x,x M̂x, f

0 0 0

 =

 M̂z,z M̂z,x 0

M̂x,z
0

M̂x,x M̂x, f
0 0

 .

Thus, by Theorem 3.2 and Lemma 4.26, we obtain

Mω,l =

 αω,l(
Mx,x Mx, f

0 0

)∗ (Mx,z
0

)
αω,l

 ,

where

α = Mz,z +
(

Mz,x 0
) (Mx,x Mx, f

0 0

)∗ (Mx,z
0

)
= Mz,z +

(
Mz,x 0

) ((Mx,x)∗ (Mx,x)∗Mx, f
0 1

)(
Mx,z

0

)
= Mz,z +

(
Mz,x(Mx,x)∗ Mz,x(Mx,x)∗Mx, f

) (Mx,z
0

)
= Mz,z + Mz,x(Mx,x)

∗Mx,z . (4.12)

Now, we continue with the term from before and get

Mω,l =

 αω,l(
Mx,x Mx, f

0 0

)∗ (Mx,z
0

)
αω,l


=

 (Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l(
Mx,x Mx, f

0 0

)∗ (Mx,z
0

)
(Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l


=

 (Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l(
(Mx,x)∗ (Mx,x)∗Mx, f

0 1

)(
Mx,z

0

)
(Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l


=

 (Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l(
(Mx,x)∗Mx,z

0

)
(Mz,z + Mz,x(Mx,x)∗Mx,z)ω,l


=


(

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l(

(Mx,x)∗Mx,z
)(

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l

0

 .
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Then, we start the run of the automaton with an empty stack and get

(Mω,l)ε =


(

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l(

(Mx,x)∗Mx,z
)(

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l

0


ε

=


((

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l)

ε((
(Mx,x)∗Mx,z

)(
Mz,z + Mz,x(Mx,x)∗Mx,z

)ω,l
)

ε
0


=


((

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l)

ε

∑π∈Γ∗
(
(Mx,x)∗Mx,z

)
ε,π

((
Mz,z + Mz,x(Mx,x)∗Mx,z

)ω,l)
π

0


4
=


((

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l)

ε

∑π∈Γ∗ 0
((

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l)

π
0


=


((

Mz,z + Mz,x(Mx,x)∗Mx,z
)ω,l)

ε
0
0


where the fourth equality uses the fact that ((Mx,x)∗Mx,z)ε,π = 0 which is because
(Mx,z)π,π′ = 0 for all π 6= Zkπ′′ (1 ≤ k ≤ n and π′′ ∈ Γ∗) and at the same time,
((Mx,x)∗)ε,Zkπ′′ = 0 because only (Mz,x)ε,Zk 6= 0 by construction.

The vector (Mω,l)ε is indexed by z1, . . . , zn, x1, . . . , xn, f , thus completing the proof.

We want to apply the results from Section 4.1. The following three lemmas investi-
gate the star operation applied to simple reset pushdown matrices M induced by the
Greibach normal form (4.3), (4.10). The lemmas state that in a computation (M∗)ε,ε,
the new states yk are never reached when starting in a state xi and therefore, these
computations are equivalent to the computations (M′∗)ε,ε for M′ being induced by the
Greibach normal form (4.3), i.e., for M′ built by the old construction.

Lemma 4.28. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10). Then, for all 1 ≤ i, k ≤ n,

((M∗)ε,ε)xk ,xi = (((Mx,x)
∗)ε,ε)xk ,xi .

Proof. Let ∆ = {X1, . . . , Xn}. We have

((M∗)ε,ε)xk ,xi = ∑
t≥0

((Mt)ε,ε)xk ,xi

= ∑
t≥0

∑
π1,...,πt−1∈Γ∗

(
Mε,π1 Mπ1,π2 · · ·Mπt−1,ε

)
xk ,xi

= ∑
t≥0

∑
π1∈∆∗

π2,...,πt−1∈Γ∗

∑
1≤j1≤n

(Mε,π1)xk ,xj1

(
Mπ1,π2 · · ·Mπt−1,ε

)
xk ,xi
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= ∑
t≥0

∑
π1,...,πt−1∈∆∗

∑
1≤j1,...,jt−1≤n

(Mε,π1)xk ,xj1
(Mπ1,π2)xj1 ,xj2

· · · (Mπt−1,ε)xjt−1 ,xi

=
((

∑
t≥0

(Mx,x)
t)

ε,ε
)

xk ,xi
= (((Mx,x)

∗)ε,ε)xk ,xi ,

where the third equality (and similarly the fourth equality) is by definition of induced
pushdown matrices; the blocks (Mε,Xk)xi ,xj , (MXk ,Xk)xi ,xj and (Mε,ε)xi ,xj are the only
non-null blocks that describe a step in the matrix starting from a state xi and having ε

or Xk as the topmost stack symbol.

Lemma 4.29. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10). Then, we have

((Mx,x + Mx,z(Mz,z)
∗Mz,x)

∗)ε,ε = ((Mx,x)
∗)ε,ε .

Proof. Let ∆ = {X1, . . . , Xn}. In some sense similar to the proof of Lemma 4.28, we
have

((Mx,x + Mx,z(Mz,z)
∗Mz,x)

∗)ε,ε

=
(
∑
t≥0

(Mx,x + Mx,z(Mz,z)
∗Mz,x)

t
)

ε,ε

= ∑
t≥0

∑
π1,...,πt−1∈Γ∗

(Mx,x + Mx,z(Mz,z)
∗Mz,x)ε,π1 · · · (Mx,x + Mx,z(Mz,z)

∗Mz,x)πt−1,ε

= ∑
t≥0

∑
π1,...,πt−1∈Γ∗

(
(Mx,x)ε,π1 +

(
∑

π,π′∈Γ∗
(Mx,z)ε,π((Mz,z)

∗)π,π′(Mz,x)π,π1

))
· · · (Mx,x + Mx,z(Mz,z)

∗Mz,x)πt−1,ε

4
= ∑

t≥0
∑

π1∈∆∗
π2,...,πt−1∈Γ∗

(Mx,x)ε,π1(Mx,x+Mx,z(Mz,z)
∗Mz,x)π1,π2 · · ·(Mx,x+Mx,z(Mz,z)

∗Mz,x)πt−1,ε

= ∑
t≥0

∑
π1∈∆∗

π2,...,πt−1∈Γ∗

(Mx,x)ε,π1

(
(Mx,x)π1,π2 +

(
∑

π,π′∈Γ∗
(Mx,z)π1,π((Mz,z)

∗)π,π′(Mz,x)π,π2

))
· · · (Mx,x + Mx,z(Mz,z)

∗Mz,x)πt−1,ε

6
= ∑

t≥0
∑

π1,...,πt−1∈∆∗
(Mx,x)ε,π1(Mx,x)π1,π2 · · · (Mx,x)πt−1,ε = ((Mx,x)

∗)ε,ε ,

where the fourth equality is because (Mx,z)ε,π = 0 for all π ∈ Γ∗. Similarly, for the
sixth equality, we use the fact that (Mx,z)πi ,π = 0 for all πi ∈ ∆∗ (and π ∈ Γ∗).

Lemma 4.30. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10) and M′ be induced by the Greibach normal form (4.3). Then, for all
1 ≤ i ≤ n,

((M∗)ε,ε)xi , f = ((M′∗)ε,ε)i, f .
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Proof. Note that by construction, we have

M̂
′
=

(
M̂x,x M̂x, f

0 0

)
.

By applying Lemma 4.25, we infer

M′∗ =
(
(Mx,x)∗ (Mx,x)∗Mx, f

0 1

)
,

and we get
((M′∗)ε,ε)i, f =

(
((Mx,x)

∗Mx, f )ε,ε
)

i . (4.13)

At the same time, we have

M̂ =

M̂z,z M̂z,x 0
M̂x,z M̂x,x M̂x, f

0 0 0



=

 M̂z,z M̂z,x 0

M̂x,z
0

M̂x,x M̂x, f
0 0

 .

By Lemma 4.25, we obtain

M∗ =

 α∗ α∗
(

Mz,x 0
)

β∗
(

Mx,z
0

)
β∗

 ,

with

α = Mz,z +
(

Mz,x 0
) (Mx,x Mx, f

0 0

)∗ (Mx,z
0

)
= Mz,z + Mz,x(Mx,x)

∗Mx,z ,

by (4.12) in the proof of Theorem 4.27 and

β∗ =

((
Mx,x Mx, f

0 0

)
+

(
Mx,z

0

)
(Mz,z)

∗ (Mz,x 0
))∗

=

((
Mx,x Mx, f

0 0

)
+

(
Mx,z(Mz,z)∗Mz,x 0

0 0

))∗
=

(
Mx,x + Mx,z(Mz,z)∗Mz,x Mx, f

0 0

)∗
=

(
(Mx,x + Mx,z(Mz,z)∗Mz,x)∗ (Mx,x + Mx,z(Mz,z)∗Mz,x)∗Mx, f

0 1

)
. (4.14)
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We deduce that

((M∗)ε,ε)xi , f =
((
(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗Mx, f

)
ε,ε

)
i

=
(
((Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗)ε,ε(Mx, f )ε,ε

)
i

=
(
((Mx,x)

∗)ε,ε(Mx, f )ε,ε
)

i

=
(
((Mx,x)

∗Mx, f )ε,ε
)

i

= ((M′∗)ε,ε)i, f ,

where the third equality is by Lemma 4.29 and the last equality is by (4.13). This
concludes the proof.

The following lemma investigates the final state f in infinite paths. It states that a
finite run of induced simple ω-reset pushdown automata is equivalent to another path
only through states x and with symbol Zj initially on the pushdown tape and ending
in state zj with an empty pushdown tape.

Lemma 4.31. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10). Then, for all 1 ≤ j, k ≤ n,

((M∗)ε,ε)xk , f =
(
((Mx,x)

∗)Zj,Zj MZj,ε
)

xk ,zj
.

Proof. The beginning of the proof is similar to the proof of Lemma 4.11. We obtain

((M∗)ε,ε)xk , f = ((M+)ε,ε)xk , f = ((M∗M)ε,ε)xk , f

= ∑
1≤v1≤2n+1

((M∗)ε,ε)xk ,v1(Mε,ε)v1, f + ∑
1≤v1≤2n+1

∑
P∈Γ

((M∗)ε,P)xk ,v1(MP,ε)v1, f

4
= ∑

1≤v1≤2n+1
((M∗)ε,ε)xk ,v1(Mε,ε)v1, f

5
= ∑

1≤i≤n
((M∗)ε,ε)xk ,xi(Mε,ε)xi , f

6
= ∑

1≤i≤n
(((Mx,x)

∗)ε,ε)xk ,xi(Mε,ε)xi , f

7
= ∑

1≤i≤n
(((Mx,x)

∗)Zj,Zj)xk ,xi(MZj,ε)xi ,zj = (((Mx,x)
∗)Zj,Zj MZj,ε)xk ,zj ,

where the fourth equality is since (MP,ε)v1, f = 0 for all 1 ≤ v1 ≤ 2n + 1 and P ∈ Γ by
our construction. In the fifth equality, we use the fact that (Mε,ε)v1, f = 0 for v1 6= xi

(1 ≤ i ≤ n). The sixth equality is by Lemma 4.28. The seventh equality is also by
construction and by the definition of pushdown matrices.

The following lemma treats a case similar to the previous lemma. It states that an
infinite path starting with symbol Zk on the pushdown tape is equivalent to a finite run
starting with an empty pushdown tape and ending in state f followed by an infinite
run that starts in state zk with an empty pushdown tape.
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Lemma 4.32. Let M be a simple reset pushdown matrix induced by the Greibach normal
form (4.3), (4.10). Then, for all 1 ≤ j, k ≤ n and 0 ≤ l ≤ n,

((Mω,l)Zk)xj = ((M∗)ε,ε)xj, f ((Mω,l)ε)zk .

Proof. By Lemma 4.20, we have

((Mω,l)Zk)xj =
[
(Mω,l)ε + (M∗)ε,ε MZk ,ε(Mω,l)ε

]
xj

=
(
(Mω,l)ε

)
xj
+
(
(M∗)ε,ε MZk ,ε(Mω,l)ε

)
xj

.

Consider the first summand. By Theorem 4.27, we know that

((Mω,l)ε)xj = 0 .

Now, we consider the second summand. For 1 ≤ j, k ≤ n, we have(
(M∗)ε,ε MZk ,ε(Mω,l)ε

)
xj
= ∑

1≤v1,v2≤2n+1
((M∗)ε,ε)xj,v1(MZk ,ε)v1,v2((Mω,l)ε)v2

= ∑
1≤v1≤2n+1

((M∗)ε,ε)xj,v1(MZk ,ε)v1,zk((Mω,l)ε)zk

= ∑
1≤v1≤2n+1

((M∗)ε,ε)xj,v1(Mε,ε)v1, f ((Mω,l)ε)zk

= ((M∗)ε,ε Mε,ε)xj, f ((Mω,l)ε)zk

= ((M∗)ε,ε)xj, f ((Mω,l)ε)zk ,

where the second equality holds because we defined (MZk ,ε)v1,v2 = 0 for v2 6= zk and
the third equality is because we have (MZk ,ε)v1,zk = (Mε,ε)v1, f for induced simple
pushdown matrices. The result follows.

We now discuss the behaviors of our constructed simple ω-reset pushdown automata.

Lemma 4.33. Let the simple ω-reset pushdown automata Al
m = (2n + 1, Γ, Im, M, P, l), for

1 ≤ m ≤ n and 0 ≤ l ≤ n, be induced by the Greibach normal form (4.3), (4.10). We then
have

‖Al
m‖ = ((M∗)ε,ε)xm, f + ((Mω,l)ε)zm .

Proof. Let 1 ≤ m ≤ n and 0 ≤ l ≤ n. We obtain

‖Al
m‖ = I(M∗)ε,εP + I(Mω,l)ε

= ((M∗)ε,ε)xm, f + ((M∗)ε,ε)zm, f + ((Mω,l)ε)xm + ((Mω,l)ε)zm ,
= ((M∗)ε,ε)xm, f + ((M∗)ε,ε)zm, f + ((Mω,l)ε)zm .

where the last equality is by Theorem 4.27.
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It remains to show that ((M∗)ε,ε)zm, f = 0. We have

M̂ =

 M̂z,z M̂z,x 0

M̂x,z
0

M̂x,x M̂x, f
0 0

 .

Now let
M∗ =

(
α β
γ δ

)
,

where we are only interested in the second component of β. By lemma 4.25 and by (4.14)
in the proof of Lemma 4.30, we have

β = (Mz,z)
∗ (Mz,x 0

) [(Mx,x Mx, f
0 0

)
+

(
Mx,z

0

)
(Mz,z)

∗ (Mz,x 0
)]∗

=
(
(Mz,z)∗Mz,x 0

) ((Mx,x + Mx,z(Mz,z)∗Mz,x)∗ (Mx,x + Mx,z(Mz,z)∗Mz,x)∗Mx, f
0 1

)
=
(
(Mz,z)

∗Mz,x(Mx,x + Mx,z(Mz,z)
∗Mz,x)

∗,

(Mz,z)
∗Mz,x(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗Mx, f

)
.

Now, we obtain

((M∗)ε,ε)zm, f

=
((

(Mz,z)
∗Mz,x(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗Mx, f

)
ε,ε

)
m

=
((

(Mz,z)
∗Mz,x(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗)

ε,ε(Mx, f )ε,ε

)
m

=
(
((Mz,z)

∗)ε,ε
(

Mz,x(Mx,x + Mx,z(Mz,z)
∗Mz,x)

∗)
ε,ε(Mx, f )ε,ε

)
m

= ∑
1≤i≤n

(
((Mz,z)

∗)ε,ε(Mz,x)ε,Zi

(
(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗)

Zi ,ε
(Mx, f )ε,ε

)
m

, (4.15)

where in the second equality, we have (Mx, f )π,ε = 0 for π 6= ε. The third equality
uses that (Mz,z)∗)ε,π = 0 for π 6= ε. In the fourth equality, we have (Mz,x)ε,π = 0 for
π /∈ {Zi | 1 ≤ i ≤ n}.

We concentrate on the factor in the center, where we have(
(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗)

Zi ,ε

= ∑
t≥0

∑
π1,...,πt−1∈Γ∗

(Mx,x + Mx,z(Mz,z)
∗Mz,x)Zi ,π1 · · · (Mx,x + Mx,z(Mz,z)

∗Mz,x)πt−1,ε

= ∑
t≥0

∑
π1,...,πt−2∈Γ∗

(Mx,x + Mx,z(Mz,z)
∗Mz,x)Zi ,π1 · · · (Mx,x + Mx,z(Mz,z)

∗Mz,x)πt−2,ε(Mx,x)ε,ε

= ∑
t≥0

(Mx,x)Zi ,ε · · · (Mx,x)ε,ε(Mx,x)ε,ε = 0 ,
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where in the second (and similarly in the third) equality we have (Mx,x + Mx,z(Mz,z)∗

Mz,x)πt−1,ε = (Mx,x)ε,ε because (Mx,x)πt−1,ε = 0 for πt−1 6= ε and because

(Mx,z(Mz,z)
∗Mz,x)πt−1,ε = ∑

π,π′∈Γ∗
(Mx,z)πt−1,π((Mz,z)

∗)π,π′(Mz,x)π′,ε = 0

as (Mz,x)π′,ε = 0 for all π′. In the last equality, (Mx,x)Zi ,ε = 0.
We now plug this into (4.15) and obtain

((M∗)ε,ε)zm, f

= ∑
1≤i≤n

(
((Mz,z)

∗)ε,ε(Mz,x)ε,Zi

(
(Mx,x + Mx,z(Mz,z)

∗Mz,x)
∗)

Zi ,ε
(Mx, f )ε,ε

)
m

= ∑
1≤i≤n

(
((Mz,z)

∗)ε,ε(Mz,x)ε,Zi 0(Mx, f )ε,ε

)
m
= 0 .

This completes the proof.

The following theorem compares the behavior of induced simple ω-reset pushdown
automata with the solutions of system (4.8).

Theorem 4.34. Let (S, V) be a complete semiring-semimodule pair. Let the simple ω-reset
pushdown automata Al

m, for 1 ≤ m ≤ n and 0 ≤ l ≤ n, be induced by the Greibach normal
form (4.3), (4.10).

Then, for 0 ≤ l ≤ n,

(‖Al
1‖, . . . , ‖Al

n‖) =
(
((M∗)ε,ε)x1, f + ((Mω,l)ε)z1 , . . . , ((M∗)ε,ε)xn, f + ((Mω,l)ε)zn

)
is a solution of (4.8).

Proof. We show that

(((M∗)ε,ε)x1, f , . . . , ((M∗)ε,ε)xn, f ) and (((Mω,l)ε)z1 , . . . , ((Mω,l)ε)zn)

are solutions of the mixed ω-algebraic system (4.3), (4.10).
Let now M′ be induced by the Greibach normal form (4.3). By Theorem 4.12,

(((M′∗)ε,ε)1, f , . . . , ((M′∗)ε,ε)n, f ) is a solution of (4.3). By Lemma 4.30, we deduce that
(((M∗)ε,ε)x1, f , . . . , ((M∗)ε,ε)xn, f ) is also a solution of (4.3).

We now show that (((Mω,l)ε)z1 , . . . , ((Mω,l)ε)zn) is a solution of (4.10) and substitute
it into the right sides of (4.10):

∑
1≤j,k≤n

∑
a∈Σ

(pi, axjzk)aσjωk + ∑
1≤j≤n

∑
a∈Σ

(pi, azj)aωj

= ∑
1≤j,k≤n

(Mε,Zk)zi ,xj((M∗)ε,ε)xj, f ((Mω,l)ε)zk + ∑
1≤j≤n

(Mε,ε)zi ,zj((Mω,l)ε)zj

= ∑
1≤j,k≤n

(Mε,Zk)zi ,xj((Mω,l)Zk)xj + ∑
1≤j≤n

(Mε,ε)zi ,zj((Mω,l)ε)zj

= ∑
1≤k≤n

(Mε,Zk(Mω,l)Zk)zi + (Mε,ε(Mω,l)ε)zi

=
(

MMω,l)ε

)
zi
= ((Mω,l)ε)zi , for each 1 ≤ i ≤ n ,

where the second equality is by Lemma 4.32, the last equality is by Theorem 4.16.
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The theorem above, Theorem 4.34, is not sufficient for our main result. The following
theorem extends the previous theorem by stating that (‖Al

1‖, . . . , ‖Al
n‖) is a canonical

solution of (4.8).

Theorem 4.35. Let (S, V) be a complete semiring-semimodule pair. Let the simple ω-reset
pushdown automata Al

m, for 1 ≤ m ≤ n and 0 ≤ l ≤ n, be induced by the Greibach normal
form (4.3), (4.10).

Then, for 0 ≤ l ≤ n,

(‖Al
1‖, . . . , ‖Al

n‖) =
(
((M∗)ε,ε)x1, f + ((Mω,l)ε)z1 , . . . , ((M∗)ε,ε)xn, f + ((Mω,l)ε)zn

)
is the lth canonical solution of (4.8).

Proof. We show that

(((M∗)ε,ε)x1, f , . . . , ((M∗)ε,ε)xn, f ) and (((Mω,l)ε)z1 , . . . , ((Mω,l)ε)zn)

is the lth canonical solution of the mixed ω-algebraic system (4.3), (4.10).
Let M′ be induced by the Greibach normal form (4.3). Then, by Theorem 4.12,

(((M′∗)ε,ε)1, f , . . . , ((M′∗)ε,ε)n, f ) is the unique (and therefore least) solution of (4.3).
By Lemma 4.30, we can conclude that σ = (((M∗)ε,ε)x1, f , . . . , ((M∗)ε,ε)xn, f ) is also the
least solution of (4.3).

Fix l with 1 ≤ l ≤ n for the remainder of the proof. It remains to show that for the
system (4.10), written as z = ρ(x)z, we have

ρ(σ)ω,l = (((Mω,l)ε)z1 , . . . , ((Mω,l)ε)zn)

We start with the right side of equation (4.10). We have, for 1 ≤ i ≤ n,

ρ(σ)iz = ∑
1≤j,k≤n

∑
a∈Σ

(pi, axjzk)aσjzk + ∑
1≤j≤n

∑
a∈Σ

(pi, azj)azj

= ∑
1≤j,k≤n

∑
a∈Σ

(pi, axkzj)aσkzj + ∑
1≤j≤n

∑
a∈Σ

(pi, azj)azj

= ∑
1≤j≤n

(
∑

1≤k≤n
∑
a∈Σ

(pi, axkzj)aσk + ∑
a∈Σ

(pi, azj)a
)

zj

= ∑
1≤j≤n

(
∑

1≤k≤n
(Mε,Zj)zi ,xk((M∗)ε,ε)xk , f + (Mε,ε)zi ,zj

)
zj

5
= ∑

1≤j≤n

(
∑

1≤k≤n
(Mε,Zj)zi ,xk(((Mx,x)

∗)Zj,Zj MZj,ε)xk ,zj + (Mε,ε)zi ,zj

)
zj

= ∑
1≤j≤n

(
∑

1≤k,k′≤n
(Mε,Zj)zi ,xk(((Mx,x)

∗)Zj,Zj)xk ,xk′ (MZj,ε)xk′ ,zj + (Mε,ε)zi ,zj

)
zj

= ∑
1≤j≤n

(
∑

1≤k,k′≤n
(M̂zi ,xk)ε,Zj(((M̂x,x)

∗)xk ,xk′ )Zj,Zj(M̂xk′ ,zj)Zj,ε + (M̂zi ,zj)ε,ε

)
zj

8
= ∑

1≤j≤n

(
∑

1≤k,k′≤n
∑
P∈Γ

(M̂zi ,xk)ε,P(((M̂x,x)
∗)xk ,xk′ )P,P(M̂xk′ ,zj)P,ε + (M̂zi ,zj)ε,ε

)
zj
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= ∑
1≤j≤n

(
∑

1≤k,k′≤n

(
M̂zi ,xk((M̂x,x)

∗)xk ,xk′ M̂xk′ ,zj

)
ε,ε + (M̂zi ,zj)ε,ε

)
zj

= ∑
1≤j≤n

(
M̂zi ,x(M̂x,x)

∗M̂x,zj + M̂zi ,zj

)
ε,ε

zj ,

where the fifth equality is by Lemma 4.31. The eighth equality is because for P 6= Zj,
we have (M̂xk′ ,zj)P,ε = 0.

Now for ρ of the system z = ρ(x)z, we obtain

ρ(σ) =


(

M̂z1,x(M̂x,x)∗M̂x,z1 + M̂z1,z1

)
ε,ε · · ·

(
M̂z1,x(M̂x,x)∗M̂x,zn + M̂z1,zn

)
ε,ε

... . . . ...(
M̂zn,x(M̂x,x)∗M̂x,z1 + M̂zn,z1

)
ε,ε · · ·

(
M̂zn,x(M̂x,x)∗M̂x,zn + M̂zn,zn

)
ε,ε


=
(

Mz,x(Mx,x)
∗Mx,z + Mz,z

)
ε,ε

.

Then, we have(
ρ(σ)ω,l)

j

=
(((

Mz,x(Mx,x)
∗Mx,z + Mz,z

)
ε,ε

)ω,l
)

j

= ∑
(j1,j2,...)∈Pl

(
M̂zj,x(M̂x,x)

∗M̂x,zj1
+ M̂zj,zj1

)
ε,ε

(
M̂zj1 ,x(M̂x,x)

∗M̂x,zj2
+ M̂zj1 ,zj2

)
ε,ε · · ·

4
= ∑
(j1,j2,...)∈Pl

∑
π1,π2,...∈Γ∗

(
M̂zj,x(M̂x,x)

∗M̂x,zj1
+ M̂zj,zj1

)
ε,π1

(
M̂zj1 ,x(M̂x,x)

∗M̂x,zj2
+ M̂zj1 ,zj2

)
π1,π2
· · ·

=
((

(Mz,x(Mx,x)
∗Mx,z + Mz,z)

ω,l)
ε

)
j
, (4.16)

where the fourth equality uses the fact that
(

M̂zi ,x(M̂x,x)∗M̂x,zj + M̂zi ,zj

)
ε,π = 0 for

π 6= ε which is because (M̂zi ,zj)ε,π = 0 for π 6= ε by definition and because, by our
construction, we have

Mz,x(Mx,x)
∗Mx,z = ∑

1≤j≤n
(Mz,x)ε,Zj((Mx,x)

∗)Zj,Zj(Mx,z)Zj,ε .

Inductively, the above argument can be applied to all factors
(

M̂zji ,x
(M̂x,x)∗M̂x,zji+1

+

M̂zji ,zji+1

)
πi ,πi+1

because we learn from the preceding factor that πi = ε.
Now, we proceed from the other direction. From Theorem 4.27, we know that for

the simple ω-reset pushdown automaton Al
m and a variable zj, we have

((Mω,l)ε)zj =
(((

Mz,z + Mz,x(Mx,x)
∗Mx,z

)ω,l)
ε

)
j

= ρ(σ)ω,l
j ,

where the last equality is by (4.16). This completes the proof.
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4.2 Infinite Words

We now combine our previous discussion and Theorem 4.35 to get our second main
result.

Corollary 4.36. Let S be a continuous star-omega semiring with the underlying semiring S
being commutative and let r ∈ Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉.

Then there exists a simple ω-reset pushdown automaton with behavior r.

Proof. Let r ∈ Salg〈〈Σ∗〉〉×Salg〈〈Σω〉〉. As discussed on page 81, by Theorem 3.14 (and
Theorem 3.5), r is a component of a canonical solution of an ω-algebraic system in
Greibach normal form over S〈〈Σ∗〉〉×S〈〈Σω〉〉. Let (4.8) be such a system and assume
that the mth component of the lth canonical solution of (4.8) is r, i.e., assume τm = r
for the lth canonical solution τ.

Now, we can construct the simple ω-reset pushdown automata Al
m induced by the

Greibach normal form (4.3), (4.10), for which, by Theorem 4.35, (‖Al
1‖, . . . , ‖Al

n‖) is
the lth canonical solution of (4.8). As the lth canonical solution is unique, we can
conclude that

‖Al
m‖ = τm = r .
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CHAPTER 5

Weighted Logic

This chapter is devoted to a logical characterization of weighted simple ω-pushdown
automata. Here, we will extend the weighted automaton model that we used in
Chapter 4 by using ω-valuation monoids as weight structure. They include complete
semirings but also discounted and average behavior. Valuation monoids first appeared
in Droste and Meinecke (2012) but their idea is based on Chatterjee, Doyen and Hen-
zinger (2008). By an example, we show how a basic web server and its average response
time for requests can be modeled by a simple ω-pushdown automaton with weights in a
suitable ω-valuation monoid. This chapter contains a comparison of the weighted sim-
ple ω-pushdown automata defined in this chapter and the simple ω-reset pushdown
automata in the preceding chapter.

Our first main result in this chapter is the expressive equivalence of Büchi and Muller
acceptance for weighted simple ω-pushdown automata.

Then, we show several closure properties for our automaton model. Our second
main result of this chapter is a Nivat-like decomposition theorem Nivat (1968) that
shows that by the help of a morphism, we can express the behavior of every weighted
simple ω-pushdown automaton as the intersection of an unweighted ω-pushdown
automaton and a very simple ω-series. Nivat’s theorem was extended to weighted
automata of finite words over semirings by Droste and Kuske (to appear).

In this chapter, as the third main result, we extend the BET-Theorem (Büchi, 1960;
Elgot, 1961; Trakhtenbrot, 1961) to weighted simple ω-pushdown automata. We extend
the logic in Lautemann, Schwentick and Thérien (1994) and Droste and Dück (2017)
and prove its equivalence to weighted simple ω-pushdown automata. For the proof,
we do not reinvent the wheel but use the already existing BET-Theorem for weighted
nested ω-word automata (Droste and Dück, 2017). The application of a projection
allows us to lift the result on weighted nested ω-word automata to weighted simple
ω-pushdown automata. We show how the quantitative behavior of the basic web server
example mentioned above can be described in our weighted matching ω-MSO logic.

We structure the chapter as follows. We give basic definitions and compare Muller
and Büchi acceptance in Section 5.1. Then, we prove several closure properties and
finally, the Nivat-like result is in Section 5.3. The next Section 5.4 defines our weighted
logic. For the convenience of the reader, Section 5.5 summarizes the known results
about weighted nested ω-word languages and also shows the new projection. Finally,
Section 5.6 proves the equivalence between the logic proposed in Section 5.4 and the
automaton model defined in Section 5.1.

This chapter is based on Droste, Dziadek and Kuich (2020b).
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Chapter 5 Weighted Logic

5.1 ω-Valuation Monoids

This section gives basic definitions and introduces our weight structure, the ω-valuation
monoids (introduced by Droste and Meinecke, 2012).

Recall from Chapter 3 (see page 36) that a monoid (D,+, 0) is called complete if it
has infinitary sum operations (i) that are an extension of the finite sums and (ii) that
are associative and commutative.

For a set D we denote by C ⊆fin D that C is a finite subset of D. Let (Dfin)
ω =⋃

C⊆finD Cω.

Definition 5.1. An ω-valuation monoid (D,+, Valω, 0) consists of a complete monoid
(D,+, 0) and an ω-valuation function Valω : (Dfin)

ω → D such that Valω(di)i∈N = 0

whenever di = 0 for some i ∈N. H

A monoid (D,+, 0) is called idempotent if d + d = d for all d ∈ D. An ω-valuation
monoid (D,+, Valω, 0) is equally called idempotent if its underlying monoid (D,+, 0)
is idempotent.

A product ω-valuation monoid (ω-pv-monoid) is a tuple (D,+, Valω, �, 0, 1) where
(D,+, Valω, 0) is an ω-valuation monoid, � : D2 → D is a product function and further
1 ∈ D, Valω(1ω) = 1 and 0 � d = d � 0 = 0, 1 � d = d � 1 = d for all d ∈ D.

Example 5.2 (ω-valuation monoids). The first two examples are inspired by Chatterjee,
Doyen and Henzinger (2008).

1. Let R̄ = R∪ {−∞, ∞} and let −∞ + ∞ = −∞. Then (R̄, sup, lim avg,+,−∞, 0)
is an ω-pv-monoid where

lim avg(di)i∈N = lim inf
n→∞

1
n

n−1

∑
i=0

di .

2. Let R̄+ = {x ∈ R | x ≥ 0} ∪ {−∞}. Then (R̄+, sup, discλ,+,−∞, 0) for 0 <

λ < 1 is an ω-pv-monoid where

discλ(di)i∈N = lim
n→∞

n

∑
i=0

λidi .

3. By taking the infinite product as ω-valuation function, we get that every complete
star-omega semiring (S,⊕,⊗, 0, 1) is an ω-pv-monoid (S,⊕,

⊗
,⊗, 0, 1). O

The following definitions are taken from Droste and Dück (2017) and Droste and
Meinecke (2012). Let (D,+, Valω, �, 0, 1) be an ω-pv-monoid. We call D associative
(or commutative) if � is associative (or commutative). The ω-pv-monoid D is called
left-+-distributive if for all d ∈ D, for any index set I and (di)i∈I ∈ DI :

d �∑
i∈I

di = ∑
i∈I

(d � di) .

98
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Analogously, we define right-+-distributivity. D is +-distributive if D is left- and right-
+-distributive. We call D left-Valω-distributive if for all d ∈ D and (di)i∈N ∈ Dω:

d �Valω((di)i∈N) = Valω((d � di)i∈N) .

D is called left-multiplicative if for all d ∈ D and (di)i∈N ∈ Dω:

d �Valω((di)i∈N) = Valω(d � d0, (di)i≥1) .

We further call D conditionally commutative if we have for all (di)i∈N, (d′i)i∈N ∈ Dω with
di � d′j = d′j � di for all j < i,

Valω((di)i∈N) �Valω((d′i)i∈N) = Valω((di � d′i)i∈N) .

The ω-pv-monoid D is called left-distributive if D is left-+-distributive and either left-
Valω-distributive or left-multiplicative. If D is +-distributive and associative then
(D,+, �, 0, 1) is a complete semiring and we call (D,+, Valω, �, 0, 1) an ω-valuation
semiring. A cc-ω-valuation semiring is an ω-valuation semiring D that is conditionally
commutative and left-distributive.

Example 5.3. We discuss here the properties of the ω-pv-monoids of Example 5.2:
1. (R̄, sup, lim avg,+,−∞, 0) is left-distributive but not conditionally commutative,
2. (R̄+, sup, discλ,+,−∞, 0) is a left-multiplicative cc-ω-valuation semiring,
3. (S,⊕,

⊗
,⊗, 0, 1) is a cc-ω-valuation semiring. O

5.2 Weighted Simple ω-Pushdown Automata

We will now introduce the weighted automata we want to discuss in this chapter. At
the end of this section, we give our first main result, the comparison of Muller and
Büchi acceptance. As it simplifies the logical characterization, we follow the same
approach as in Chapter 2 (cf. Droste and Perevoshchikov, 2015a; Droste, Dziadek and
Kuich, 2020a) and use a restricted type of pushdown automaton. We call it simple
ω-pushdown automaton. For the unweighted setting, we proved in Chapter 2 that this
automaton model is expressively equivalent to general ω-pushdown automata; for
finite words, this equivalence is hidden in a proof by Blass and Gurevich (2006). For
continuous commutative star-omega semirings we could show in Chapter 4 that for
every ω-algebraic series r, there exists a simple ω-reset pushdown automaton with
behavior r (Droste, Dziadek and Kuich, 2019a,b, 2020c). A comparison of simple reset
pushdown automata and weighted simple pushdown automata is given in this section.

Simple ω-pushdown automata are realtime, i.e. they do not use ε-transitions. Addi-
tionally, we restrict transitions in a way to only allow either to keep the stack unaltered,
to push one symbol or to pop one symbol. Thus, let S(Γ) = ({↓}× Γ)∪{#}∪ ({↑}× Γ)
be the set of stack commands for a stack alphabet Γ (exactly as in Chapter 2). Note that
this implies that the automaton can only read the top of the stack when popping it.
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Chapter 5 Weighted Logic

Additionally, for technical reasons, we start runs with an empty stack and therefore
allow to push onto the empty stack.

We will use Definition 2.6 of an ωPDA from Chapter 2.

Definition 5.4. A weighted (simple) ω-pushdown automaton (ωWPDA) over the alphabet
Σ and the ω-valuation monoid (D,+, Valω, 0) is a tuple M = (Q, Γ, T, I, F, wt) where
• (Q, Γ, T, I, F) is an unweighted ω-pushdown automaton (ωPDA) over Σ,
• wt : T → D is a weight function. H

Definition 5.5. A Muller-accepting ω-pushdown automaton over the alphabet Σ is
a tuple M = (Q, Γ, T, I,F ) where Q, Γ, T, I are defined as for ωPDA, but F ⊆ 2Q

is a set of Muller-accepting subsets of Q. Similarly, a weighted Muller-accepting ω-
pushdown automaton over the alphabet Σ and the ω-valuation monoid D is a tuple
M = (Q, Γ, T, I,F , wt). H

The following definitions are similar to the ones from Chapter 2.
A configuration of an ωWPDA is a pair (q, γ), where q ∈ Q and γ ∈ Γ∗. We define

the transition relation between configurations as follows. Let γ ∈ Γ∗ and t ∈ T.
For t = (q, a, q′, (↓, A)), we write (q, γ) `t

M (q′, Aγ). For t = (q, a, q′, #), we write
(q, γ) `t

M (q′, γ). Finally, for t = (q, a, q′, (↑, A)), we write (q, Aγ) `t
M (q′, γ). These

three types of transitions are called push, internal and pop transitions, respectively.
We denote by label(q, a, q′, s) = a the label and by state(q, a, q′, s) = q the state of

a transition. Both, as well as the function wt will be extended to infinite sequences
of transitions by letting label((ti)i≥0) = (label(ti))i≥0 ∈ Σω for the infinite word
constructed from the labels and state((ti)i≥0) = (state(qi))i≥0 ∈ Qω for the infinite
sequence of states of the transitions and finally, wt((ti)i≥0) = (wt(ti))i≥0 ∈ Dω for the
infinite sequence of transitions weights.

An infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T is called a run of the
ωWPDA M on w = label(ρ) iff there exists an infinite sequence of configurations
(pi, γi)i≥0 with p0 ∈ I and γ0 = ε such that (pi, γi) `ti

M (pi+1, γi+1) for each i ≥ 0.
We abbreviate a run ρ = (ti)i≥0 with (p0, γ0) `t0

M (p1, γ1) `t1
M · · · where label(ti) =

ai by ρ : (p0, γ0)
a0−→ (p1, γ1)

a1−→ · · · such that the word becomes visible.
For an infinite sequence of states (qi)i≥0, let Inf((qi)i≥0) =

{
q | q = qi for infinitely

many i ≥ 0
}

be the set of states that occur infinitely often. For Büchi-accepting
automata, a run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅. For Muller-accepting
automata, a run ρ is called successful if Inf(state(ρ)) ∈ F .

An ωWPDA M is called unambiguous if there exists at most one successful run of M
on every word of the input alphabet.

For an ωWPDA M, we introduce the following function ‖M‖ : Σω → D which
is called the behavior of M and which is defined by ‖M‖(w) = ∑(Valω(wt(ρ)) |
ρ successful run of M on w). If there is no successful run on w, then ‖M‖(w) = 0.

Every series s : Σω → D which is the behavior of some ωWPDA over D is called
ωWPDA-recognizable.
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1 2

req, (↓, X) : 0

ans, (↑, X) : 0

wait, # : 1
call, (↓, Y) : 1
ret, (↑, Y) : 1

Figure 5.1: Example 5.6: Weighted ω-pushdown automaton over the alphabet Σ =

{req, ans, call, ret, wait} and the ω-valuation monoid R̄. The value after the “:” are the
used weights 0 and 1.

An ωWPDA M = (Q, Γ, T, I, F, wt) that only uses internal transitions, i.e., for which
Γ = ∅ and for all transitions t = (q, a, q′, s) ∈ T holds s = #, is called a weighted finite
ω-automaton, or short ωWFA.

Series that are the behavior of some ωWFA are called ωWFA-recognizable.

Example 5.6. We extend the ω-pv-monoid 1 of Example 5.2 as (R̄, sup, specialavg,
+,−∞, 0) where we define a new ω-valuation function to count and take the average of
the counted values. Let h be a function that maps natural numbers to strings as follows.

h : N→ {0, 1}∗

n 7→ 0 11 . . . 1︸ ︷︷ ︸
n-times

0

Then we extend h to infinite sequences of natural numbers h : Nω → {0, 1}ω in the
natural way. We will consider its inverse where we have for instance

h−1(01110011000011110 . . .) = 3204 . . . .

Then let specialavg = lim avg ◦ h−1. For w /∈ (01∗0)ω we set specialavg(w) = −∞.
Now, we define an automaton A as shown in Figure 5.1. We let A = ({1, 2}, {X, Y},

T, {1}, {1}, wt) be an ωWPDA over the alphabet Σ = {req, ans, call, ret, wait}, where T
is defined as shown in the Figure and the weights are indicated after the colon symbol.

The automaton simulates some kind of (web) server that takes requests from clients
and answers them. For every request, the server has to call some amount of other
services and await their returns. Only when all calls have been returned, the server
answers the original request. This is a context-free property. Only runs that always
eventually return to state 1 to serve new clients are considered valid.

Every call, return, or wait takes one second to operate and this operation time is
accounted for in the weight. The specialavg operation sums up all the waiting time per
request and returns the long run average response time. O

We now discuss how the ωWPDA defined in this chapter compare to the simple
ω-reset pushdown automata in Chapter 4. The main difference is mainly a traditional
one: The ω-algebraic systems combine a semiring and semimodule part because the
semimodule part of their behavior depends on the semiring part. We therefore defined
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ω-reset pushdown automata to also include this semiring part. But for a comparison
here, we can safely ignore this component.

The second obvious difference is the weight structure. As given in the Examples 5.2
and 5.3, the complete star-omega semirings form a class of cc-ω-valuation semirings by
taking the infinite product as the ω-valuation function. Therefore, we have to restrict
ωWPDA to complete star-omega semirings for the following comparison.

The behavior of a simple ω-reset pushdown automaton A is defined as

‖A‖ = I(M∗)ε,εP + I(Mω,l)ε .

Focusing on infinite words, we get I(Mω,l)ε as the interesting parts. In comparison,
ωWPDA, as defined in this chapter, do equally start with an empty stack ε, and they
follow the Büchi-acceptance conditions defined also for the operation ω,l .

However, ωWPDA do not use weights I for initial states. The missing weights of
initial states can be mitigated as seen in the following lemma.

Lemma 5.7. ωWPDA with additional initial weights are expressively equivalent to ωWPDA.

We define an ωWPDA with additional initial weights over the alphabet Σ and the
ω-valuation monoid (D,+, Valω, 0) as a tuple M = (Q, Γ, T, i, F, wt) similar to our
original ωWPDA without initial weights but with

i : Q→ D .

We let the weight for one run

ρ : (p0, γ0) `t0
M (p1, γ1) `t1

M . . .

be defined as
Valω(wt(ρ)) = Valω(i(p0), (wt(ti))i≥0) .

Proof. Let M = (Q, Γ, T, i, F, wt) be an ωWPDA with additional initial weights. We
construct an ωWPDA (without initial weights) M′ = (Q′, Γ, T′, I′, F′, wt′) with

Q′ = Q ∪ (Q× T) ,
F′ = F× T ,
I′ = {q ∈ Q | i(q) 6= 0} ,

T′ = {(p, a, (p′, t′), s) | t′ = (p, a, p′, s) ∈ T}
∪ {((p, t), a, (p′, t′), s) | t′ = (p, a, p′, s) ∈ T, t ∈ T} ,

wt′(p, a, (p′, t′), s) = i(p) ,
wt′((p, t), a, (p′, t′), s) = wt(t) .

The aim of the construction is to “shift” the weighs of M by one transition to the
right.
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1 2

3 4

M′:

⇒
1 2

3 4

1̄

3̄

M′′:

Figure 5.2: Proof of Theorem 5.9: The states 1, 2, 3, and 4 stand for the set of states that
are initial and final, initial but not final, final but not initial, or neither initial nor final,
respectively. Groups 1 and 3 are copied into 1̄ and 3̄. Transitions into 1̄ and 3̄ are only
allowed from originally non-accepting states.

Consider a run ρ of M

ρ : (p0, γ0) `t0
M (p1, γ1) `t1

M (p2, γ2) `t2
M · · · ,

with the weight
Valω(wt(ρ)) = Valω(i(p0), wt(t0), wt(t1), wt(t2), . . .) .

The new ωWPDA M′ then has a corresponding run

ρ′ : (p0, γ0) `
t′0
M′ ((p1, t0), γ1) `

t′1
M′ ((p2, t1), γ2) `

t′2
M′ · · · ,

with the weight
Valω(wt′(ρ′)) = Valω(i(p0), wt(t0), wt(t1), . . .)

= Valω(wt(ρ)) .

As we do not create new runs, our result follows.

As a consequence of the preceding discussion, we obtain the following corollary.

Corollary 5.8. ωWPDA over complete star-omega-semirings and simple ω-reset pushdown
automata are expressively equivalent.

We now state the first main result of this chapter.

Theorem 5.9. Let s : Σω → D be a series. The following are equivalent:
• s is recognizable by a Büchi-accepting ωWPDA,
• s is recognizable by a Muller-accepting ωWPDA.

Proof. There are two directions to show. The transformation of Büchi-accepting au-
tomata into Muller-accepting ones simply changes the acceptance condition. Take
a Büchi-accepting ωWPDA M = (Q, Γ, T, I, F, wt) and transform it into a Muller-
accepting ωWPDA M′ = (Q, Γ, T, I,F , wt) with

F = {S ⊆ Q | S ∩ F 6= ∅} .
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As exactly the same runs are successful in both automata, this approach works also in
the weighted case.

The standard approach for transforming Muller-accepting automata into Büchi-
accepting automata needs to be adjusted in the weighted case as it creates infinitely
many possible runs in the Büchi automaton for every run in the Muller automaton. The
construction usually creates a special set of accepting states that have to be traversed
to be accepted. But in the weighted case, one has to be very careful to only allow one
entry point into this special set of accepting states.

One solution to this problem was presented in Droste and Rahonis (2006). The new
automaton then contains a group of accepting states for every F ∈ F . Entering this
group of accepting states is forbidden from a state that is already in F. In this way, the
only successful runs are the ones that switch from the original states to the new group
of accepting states at the last possible moment.

In contrast to Droste and Rahonis (2006), we cannot assume an initially normalized
automaton to solve the remaining question of the initial states that are also final. Instead,
the automaton decides non-deterministically if it will eventually see a non-final state
in the run. If no, and only in this case, it already starts in the new group of accepting
states.

Figure 5.2 depicts the idea of the construction.
Let M = (Q, Γ, T, I,F , wt) be a Muller-accepting ωWPDA. Now, we will construct

an ωWPDA M′ = (Q′, Γ, T′, I′, F′, wt′) with ‖M′‖ = ‖M‖.
We first observe that ωWPDA-recognizable series are closed under union. Indeed,

taking the disjoint union of several automataAi recognizes the sum of their recognized
series ∑ ‖Ai‖. We can therefore assume that |F | = 1, i.e., F = {F} for F ⊆ Q.

We let Q′ = Q ∪ (Q×P(Q)), F′ = {(q, F) | q ∈ F} and I′ = I ∪ {(q, {q}) | q ∈ I};
by P(Q) we here mean the power set of Q. Furthermore, we let

T′ =
{(

q, a, q′, s
)
| (q, a, q′, s) ∈ T

}
∪
{(

(q, R), a, (q′, R ∪ {q′}), s
)
| (q, a, q′, s) ∈ T, q, q′ ∈ F, R ( F

}
∪
{(

(q, F), a, (q′, {q′}), s
)
| (q, a, q′, s) ∈ T, q, q′ ∈ F

}
∪
{(

q, a, (q′, {q′}), s
)
| (q, a, q′, s) ∈ T, q ∈ Q \ F, q′ ∈ F

}
,

and

wt′(q, a, q′, s) = wt(q, a, q′, s)

wt′(q, a, (q′, R), s) = wt(q, a, q′, s)

wt′
(
(q, R), a, (q′, R), s

)
= wt(q, a, q′, s) .

This construction ensures that no run exists that switches from new states (q, R) back
to original states q′. Furthermore it is forbidden to switch from q to (q′, R) if q ∈ F.
That means that there is one specific entry point into the set of new states (q, R) and
every run entered this set will loop there. The first state in a run is allowed to be from
the new set if and only if all states in the run are in F.
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The subsets R stored in the second component of the new states (q, R) ensure that
all states p ∈ F are traversed (cf Droste and Rahonis (2006) for details). It follows that
M′ has the same amount of successful runs as M and as the weights are transferred
one-to-one, we have ‖M′‖ = ‖M‖.

5.3 Closure Properties

Let Σ, ∆ be alphabets and h : Σ→ ∆ a mapping. We can extend h to infinite words in
the natural way by setting h(w) = h(a0)h(a1)h(a2) · · · ∈ ∆ω for w = a0a1a2 · · · ∈ Σω.

For a series s : ∆ω → D, we define the series h−1(s) : Σω → D by h−1(s)(w) =

s(h(w)) for all w ∈ Σω.

Lemma 5.10. Let D be an ω-valuation monoid, Σ, ∆ two alphabets and h : Σ→ ∆ a mapping.
If s : ∆ω → D is ωWPDA-recognizable, then so is h−1(s) : Σω → D.

Proof. We follow the approach of Droste and Meinecke (2012). As s is ωWPDA-rec-
ognizable, there exists M = (Q, Γ, T, I, F, wt) over ∆ with behavior ‖M‖ = s. We
construct M′ = (Q, Γ, T′, I, F, wt′) over Σ where

T′ = {(q, a, p, s) | (q, h(a), p, s) ∈ T} ,
wt′
(
(q, a, p, s)

)
= wt

(
(q, h(a), p, s)

)
.

As the weights are translated one-to-one, it holds:

‖M′‖(w) = ∑(Valω(wt′(ρ′)) | ρ′ successful run of M′ on w)

= ∑(Valω(wt(ρ)) | ρ successful run of M on h(w))

= ‖M‖(h(w))

= h−1(‖M‖)(w)

Let now h : ∆ → Σ and let h−1(w) = {v ∈ ∆ω | h(v) = w}. Then for a series
s : ∆ω → D, we define the series h(s) : Σω → D by h(s)(w) = ∑v∈h−1(w) s(v) for all
w ∈ Σω.

Lemma 5.11. Let ∆, Σ be alphabets, (D,+, Valω, 0) an ω-valuation monoid and h : ∆→ Σ
a mapping. If s : ∆ω → D is ωWPDA-recognizable, then so is h(s) : Σω → D.

Proof. We follow the approach of Droste and Vogler (2010). As s is ωWPDA-recog-
nizable, there exists M = (Q, Γ, T, I, F, wt) over ∆ with behavior ‖M‖ = s. Fix a0 ∈ ∆.
We construct M′ = (Q′, Γ, T′, I′, F′, wt′) over Σ where Q′ = Q× ∆, F′ = F × ∆ and
I′ = I × {a0}.

T′ = {((q, a), b, (p, a′), s) | b = h(a′) and (q, a′, p, s) ∈ T}
wt′
(
((q, a), b, (p, a′), s)

)
= wt

(
(q, a′, p, s)

)
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Note that in this construction, the new states contain letters a′ ∈ ∆ because otherwise,
the function wt′ would not be well-defined; it would not always be possible to guess
the correct letter a′ only from b because h is not necessarily injective.

Also note that we fixed a0 to make sure that the first state is fixed and the amount of
successful runs is not changed by our construction.

Let b ∈ Σω. Every successful run ρ′ of M′ on a word b = (bi)i≥1 is of the form

ρ′ : ((q0, a0), ε)
b1−→ ((q1, a1), γ1)

b2−→ . . .

where h(ai) = bi and by the above construction, every such run corresponds to runs ρ

of M on words a ∈ ∆ω with a ∈ h−1(b) of the form

ρ : (q0, ε)
a1−→ (q1, γ1)

a2−→ . . .

Note that every run ρ′ of M′ can correspond to multiple runs ρ of M because h does
not need to be injective. By definition, the weight of two corresponding runs is the
same.

Finally, for a word b ∈ Σω,

‖M′‖(b) = ∑(Valω(wt′(ρ′)) | ρ′ successful run of M′ on b)

= ∑(Valω(wt(ρ)) | ρ successful run of M on a and a ∈ h−1(b))

= ∑
a∈h−1(b)

‖M‖(a)

= h(‖M‖)(b) .

Let g : Σ→ D be a mapping. We denote by Valω ◦ g : Σω → D the series defined for
all w ∈ Σω by (Valω ◦ g)(w) = Valω(g(w)).

Lemma 5.12. Let Σ be an alphabet, (D,+, Valω, 0) an ω-valuation monoid and g : Σ→ D a
mapping. Then Valω ◦ g is ωWFA-recognizable by an ωWFA with only one state.

Proof. We construct an ωWFA M = (Q, Γ, T, I, F, wt) over Σ with Q = I = F = {q0}.
Let further T = {(q0, a, q0, #) | a ∈ Σ)} and wt((q0, a, q0, #)) = g(a). The stack will not
be used, thus Γ = ∅.

Let w = (ai)i≥0 ∈ Σω. For M, there is only one run r on w. This run is r : (q0, ε)
a0−→

(q0, ε)
a1−→ . . . . It follows, that r is successful and the behavior of M is

‖M‖(w) = ∑(Valω(wt(ρ)) | ρ successful run of M on w)

= Valω(wt(r))
= Valω((wt(q, ai, q, #))i≥0)

= Valω((g(ai))i≥0)

= Valω(g(w))

= (Valω ◦ g)(w) .

Hence Valω ◦ g is ωWFA-recognizable and the ωWFA M has only one state.
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Let (D,+, Valω, 0) be an ω-valuation monoid, s : Σω → D an ωWFA-recognizable
series and L ⊆ Σω an ωPDA-recognizable language. By s ∩ L : Σω → D, we denote the
series that assigns the weights of s to the words accepted by L. Formally, for words
u ∈ Σω,

(s ∩ L)(u) =

{
s(u), if u ∈ L

0, otherwise .

Lemma 5.13. Let (D,+, Valω, 0) be an ω-valuation monoid, s : Σω→D an ωWFA-recogniz-
able series and L ⊆ Σω an ωPDA-recognizable language.

1. If L is unambiguous, then the series s ∩ L : Σω → D is ωWPDA-recognizable.
2. If D is idempotent, then the series s ∩ L : Σω → D is ωWPDA-recognizable.

Proof. To allow final states of both original Büchi-accepting automata to be visited
alternately, we use a standard construction for intersecting unweighted Büchi automata
of infinite words (cf. Thomas, 1990). The proof that this construction also works in the
weighted case is in some sense similar to Babari and Droste (2019).

Assume that M = (Q, ∅, T, I, F, wt) is an ωWFA withL(M) = s and M′ = (Q′, Γ′, T′,
I′, F′) is an ωPDA with L(M′) = L. Note that M′ does not contain ε-transitions by
definition.

We construct the ωWPDA M̃ = (Q × Q′ × {0, 1, 2}, Γ′, T̃, I × I′ × {0}), Q × Q′ ×
{2}, w̃t), where

T̃ ={
(
(q, q′, 0), a, (p, p′, 0), s′

)
| (q, a, p, #) ∈ T, (q′, a, p′, s′) ∈ T′, q /∈ F}∪

{
(
(q, q′, 0), a, (p, p′, 1), s′

)
| (q, a, p, #) ∈ T, (q′, a, p′, s′) ∈ T′, q ∈ F}∪

{
(
(q, q′, 1), a, (p, p′, 1), s′

)
| (q, a, p, #) ∈ T, (q′, a, p′, s′) ∈ T′, q′ /∈ F′}∪

{
(
(q, q′, 1), a, (p, p′, 2), s′

)
| (q, a, p, #) ∈ T, (q′, a, p′, s′) ∈ T′, q′ ∈ F′}∪

{
(
(q, q′, 2), a, (p, p′, 0), s′

)
| (q, a, p, #) ∈ T, (q′, a, p′, s′) ∈ T′}

and
w̃t
(
(q, q′, i), a, (p, p′, j), s′

)
= wt(q, a, p, #) .

As only the ωPDA M′ uses the stack, the new transitions contain only the stack com-
mands of T′.

This construction ensures that final states of M and final states of M′ are visited
infinitely often. From the other side, for every successful run ρ = (q)i∈N of M and
every successful run ρ′ = (q′)i∈N of M′, there is a new successful run ρ̃ = (q, q′, k)i∈N

of M̃, where k is alternating between 0,1 and 2. The weight of the runs ρ and ρ̃ are
equal because the weights are directly transferred.

We consider two cases:
1. If L is unambiguous, then for every word u ∈ Σω, there is either one or no

successful run of the ωPDA M′ on u. Therefore, the resulting automaton M̃ has
as many runs for a word u as the original ωWFA M had. As the weights of every
run are not changed, for u ∈ L, we have ‖M̃‖(u) = ‖M‖(u) = (s ∩ L)(u).
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2. Now let D be idempotent. For words u ∈ Σω \ L, there is no successful run
of the ωPDA M′ on u and therefore, ‖M̃‖(u) = 0. Now let n > 0 be the
number of successful runs of M′ on u ∈ L. Then, ‖M̃‖(u) = ∑n

i=1 ‖M‖(u)
because every corresponding run of M̃ has the same weight. As D is idempotent,
∑n

i=1 ‖M‖(u) = ‖M‖(u) = (s ∩ L)(u).

Note that closure under the more general intersection where both automata use the
stack does not hold. Otherwise, over the Boolean semiring, {anbncmdω | n, m ∈ N}
could be intersected with {anbmcmdω | n, m ∈ N} to gain {anbncndω | n ∈ N} which
is not ωWPDA-recognizable anymore.

Intersection with inherently ambiguous languages over non-idempotent ω-valuation
monoids might not be ωWPDA-recognizable:

Example 5.14. Let (N∞,+, ∏, 0) be an ω-pv-monoid where + is the natural addition
and ∏ is the infinite product and Σ = {a, b, c, d}. Let further s(u) = 1 for all u ∈ Σω

and
L = {aibjckdω | i = j or j = k} .

L is inherently ambiguous because the finite language {aibjck | i = j or j = k} is already
inherently ambiguous. The series s is ωWPDA-recognizable by an automaton with
only one state and one self-loop with weight 1. Then,

(s ∩ L)(u) =

{
s(u), if u ∈ L

0, otherwise ,
=

{
1, if u ∈ L

0, otherwise ,

which is not ωWPDA-recognizable anymore because the ω-valuation monoid does
not permit negative weights, instead, only one run with weight 1 is allowed. But for
the words anbncndω, multiple runs are necessary because L is inherently ambiguous,
i.e., for a contradiction, consider an ωWPDA M for the series (s ∩ L). We have (s ∩
L)(u) = 1 for every word u ∈ L and we furthermore have ‖M‖(u) = ∑(Valω(wt(ρ)) |
ρ successful run of M on w). But the only sum in N∞ yielding 1 is 1 itself plus
possibly some zeros. When stripping M of its weights while only keeping transitions
with non-zero weight, we can construct an unweighted pushdown automaton M′.
The new automaton M′ has only one successful run for every input u ∈ L and is
thus unambiguous; additionally, M′ accepts the language L. This contradicts L being
inherently ambiguous. O

Definition 5.15. Let Σ be an alphabet and (D,+, Valω, 0) an ω-valuation monoid.
We denote by Drec〈〈Σω〉〉 the family of ωWPDA-recognizable series over Σ and D.

Let further DN 〈〈Σω〉〉 (with N meaning Nivat) denote the set of series s : Σω → D
over D such that there exist an alphabet ∆, mappings h : ∆→ Σ and r : ∆→ D and an
ωPDA-recognizable language L ⊆ ∆ω such that

s = h((Valω ◦ r) ∩ L) .

108



5.3 Closure Properties

We define DNunamb〈〈Σω〉〉 like DN 〈〈Σω〉〉 with the difference that L is an unambiguous
ωPDA-recognizable language. Finally, DNdet〈〈Σω〉〉 is defined like DN 〈〈Σω〉〉 with the
difference that L is a deterministic ωPDA-recognizable language. H

Example 5.16. We extend the ω-pv-monoid 1 of Example 5.2 as (Ṙ, sup, partialavg,
+,−∞, 0) where we add a new value d that will later be ignored, i.e., Ṙ = R̄∪ {d}. We
set sup(−∞, d) = d and sup(r, d) = r for every r ∈ R. We define a new ω-valuation
function to ignore d and take the average of the remaining values. Let h be a function
that maps numbers Ṙ to strings of numbers R̄ as follows.

h : Ṙ→ R̄∗, r 7→ r, for r ∈ R̄

d 7→ ε

Then we extend h to infinite sequences h : Ṙω → R̄ω in the natural way. Now let
partialavg = lim avg ◦ h.

Let Σ = {a, b}. We make the following definitions:
• ∆ = Σ× {0, 1, . . . , 6} ,
• L =

{
(σ1, d1)(σ2, d2)(σ3, d3) · · · | di = i mod 7, σi ∈ Σ

}
,

• r(b, i) = d for all i ∈ {0, . . . , 6} and r(a, i) =

{
1, if 5 ≤ i ≤ 6

0, otherwise ,
• h(σ, i) = σ

The language L ⊆ ∆ω is obviously ωPDA-recognizable. As we will see in the follow-
ing theorem, the series s = h((Valω ◦ r) ∩ L) ∈ ṘN 〈〈Σω〉〉 is ωWPDA-recognizable
because Ṙ is idempotent. The series s calculates the greatest accumulation point of the
ratio of events a happening at the weekend (days 5 and 6) compared to all occurrences
of events a. O

The following is the second main result of this chapter, a Nivat-like decomposition
theorem.

Theorem 5.17. Let Σ be an alphabet and (D,+, Valω, 0) an ω-valuation monoid. Then,

Drec〈〈Σω〉〉 = DNdet〈〈Σω〉〉 = DNunamb〈〈Σω〉〉 ⊆ DN 〈〈Σω〉〉 .

If D is idempotent, DN 〈〈Σω〉〉 = Drec〈〈Σω〉〉.

Proof. First, we show Drec〈〈Σω〉〉 ⊆ DNdet〈〈Σω〉〉: Let s ∈ Drec〈〈Σω〉〉. Thus there exists
an ωWPDA M = (Q, Γ, T, I, F, wt) over Σ such that ‖M‖ = s. We will show that there
exist ∆, h, r and L such that s = h((Valω ◦ r) ∩ L).

Let ∆ = T and let r = wt : ∆→ D. We define h : ∆→ Σ by h((q, a, q′, s)) = a. Note
that the automaton does not allow ε-transitions and therefore, h is well-defined. We
construct an unweighted ωPDA M′ = (Q, Γ, T′, I, F) over ∆ with

T′ = {(q, (q, a, p, s), p, s) | (q, a, p, s) ∈ T} .
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Note that M′ accepts exactly the successful runs of M. As there is at most one transition
of M′ with label (q, a, p, s), M′ is unambiguous and deterministic. Define L = L(M′).

Let w ∈ Σω. Therefore,

h((Valω ◦ r) ∩ L)(w) = ∑
(
((Valω ◦ r) ∩ L)(w′) | w′ ∈ Σω and h(w′) = w

)
= ∑

(
(Valω ◦ r)(w′) | w′ ∈ L and h(w′) = w

)
= ∑

(
Valω(wt(w′)) | w′ ∈ L and h(w′) = w

)
= ∑(Valω(wt(w′)) | w′ successful run of M on w)

= ‖M‖(w) .

It follows, h((Valω ◦ r) ∩ L) = ‖M‖ = s.
The inclusions DNdet〈〈Σω〉〉 ⊆DNunamb〈〈Σω〉〉 ⊆DN 〈〈Σω〉〉 is true by definition. The

converse DNunamb〈〈Σω〉〉⊆Drec〈〈Σω〉〉 is proven by the closure properties of Lemmas
5.11, 5.12 and 5.13(1).

If D is idempotent, by Lemmas 5.11, 5.12 and 5.13(2), we get DN 〈〈Σω〉〉⊆Drec〈〈Σω〉〉.

The inclusion DN 〈〈Σω〉〉 ⊆ Drec〈〈Σω〉〉 does not hold in general for non-idempotent
D. As a counterexample, take the alphabet Σ, language L and ω-valuation monoid N∞

from Example 5.14 and let ∆ = Σ, r(σ) = 1 for all σ ∈ Σ and h(σ) = σ for all σ ∈ Σ.
Then h((Valω ◦ r) ∩ L) ∈ DN 〈〈Σω〉〉 \ Drec〈〈Σω〉〉 as stated in Example 5.14.

5.4 Logic for Weighted ω-Pushdown Automata

The third main goal of this chapter is a logical characterization of weighted simple
ω-pushdown automata. This section introduces the corresponding logic. This logic is
based on a logic for unweighted context-free languages of finite words by Lautemann,
Schwentick and Thérien (1994). We adapted it to infinite words in Chapter 2 (Droste,
Dziadek and Kuich, 2020a).

Our logic has three components. The first component is a monadic second-order
logic (MSO) that adds set variables to first-order logic. By Büchi (1960, 1966), Elgot
(1961) and Trakhtenbrot (1961), MSO has the same expressive power on finite and
infinite words as finite automata.

The second component adds the weights to the logic. Here, this is done by a new
layer of formulas that are to be interpreted quantitatively, using the operations of the
ω-pv-monoid. Formulas of the unweighted part of the logic will be interpreted as 0 or
1 in the ω-pv-monoid.

The third component is a dyadic second-order predicate – a binary relation that
is called matching relation. Every formula will be allowed to use exactly one such
predicate to link positions in words. A matching relation has a specific shape that
makes it possible to argue about the stack in pushdown automata or the brackets in
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Dyck languages (cf. Chomsky and Schützenberger, 1963) or even about the nesting in
nested words.

Our logic in Chapter 2 used only the first and the third component of the three
components mentioned above.

Let w ∈ Σω be an ω-word. The set of all positions of w is N. As in Chapter 2,
Definition 2.20, a binary relation M ⊆N×N is a matching if M is compatible with <,
each element belongs to at most one pair in M and M is noncrossing. We let Match(N)

denote the set of all matchings in N×N.
Let V1, V2 denote countable and pairwise disjoint sets of first-order and second-order

variables, respectively. We fix a matching variable µ /∈ V1 ∪V2. Let V = V1 ∪V2 ∪ {µ}.
Furthermore, D is always an ω-pv-monoid (D,+, Valω, �, 0, 1).

Definition 5.18. Let Σ be an alphabet. The set ωMSO(Σ, D) of weighted matching ω-
MSO formulas over Σ and D is defined by the extended Backus-Naur form

β ::= Pa(x) | x ≤ y | x ∈ X | µ(x, y) | ¬β | β ∨ β | ∃x. β | ∃X. β

ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ | ⊕x ϕ | ⊕X ϕ | Valx ϕ

where a ∈ Σ, d ∈ D, x, y ∈ V1 and X ∈ V2. We call all formulas β boolean formulas. H

Note that the set of boolean formulas is equal to ωMSO(Σ) as defined in Defini-
tion 2.21 for the unweighted logic.

Variables denote positions in the word. Pa(x) is a predicate indicating that the
xth letter of the word is a. Furthermore, µ(x, y) says that x and y will be matched.
The operations ⊕ and ⊗ evaluate to the operations + and � of the ω-pv-monoid D,
respectively. The formulas

⊕
x and

⊕
X sum up over all possible instances of x and X,

respectively. Valx ϕ applies Valω to the sequence of infinitely many ϕ, each of them
instantiated with a position x ∈N.

Similar to Chapter 2, page 26, we make the following definitions. A V-assignment
is a mapping σ : V → N ∪ 2N ∪Match(N) such that σ(V1) ⊆ N, σ(V2) ⊆ 2N and
σ(µ) ∈ Match(N). Let V̄ be the collection of all such mappings σ.

Let σ be aV-assignment. For x ∈ V1 and j ∈N, the update σ[x/j] is theV-assignment
σ′ with σ′(x) = j and σ′(y) = σ(y) for all y ∈ V \ {x}. The update σ[X/J] for X ∈ V2

and J ⊆N and the update σ[µ/M] for M ∈ Match(N) are defined similar.
Let ϕ ∈ ωMSO(Σ, D) be a boolean formula, w = a0a1a2 . . . ∈ Σω and let σ be a V-

assignment. Similarly to our unweighted logic, we inductively define (w, σ) |= ϕ over
the structure of ϕ as shown in Table 2.1 on page 27, where a ∈ Σ, d ∈ D, x, y ∈ V1 and
X ∈ V2. The logical counterparts ∧,→, ∀x. ϕ and ∀X. ϕ can be gained from negation
and the existing operators.

Now let ϕ ∈ ωMSO(Σ, D) be a non-boolean formula. The semantics of ϕ is the
mapping JϕK : Σω × V̄ → D defined inductively on the structure of ϕ as shown in
Table 5.1.

Note how formulas φ ⊗ ψ are evaluated by the product operation � in the ω-pv-
monoid and also note that our ωWPDAs do not have direct access to this operation.
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JdK(w, σ) = d

JβK(w, σ) =

{
1, if (w, σ) |= β,

0, otherwise

Jϕ⊕ ψK(w, σ) = JϕK(w, σ) + JψK(w, σ)

Jϕ⊗ ψK(w, σ) = JϕK(w, σ) � JψK(w, σ)

J
⊕

x ϕK(w, σ) = ∑i∈N(JϕK(w, σ[x/i]))

J
⊕

X ϕK(w, σ) = ∑I⊆N(JϕK(w, σ[X/I]))

JValx ϕK(w, σ) = Valω((JϕK(w, σ[x/i]))i∈N)

Table 5.1: The semantics of weighted ωMSO(Σ, D) formulas

However, the first two layers of our logic, the ωMSO(D, Σ) formulas, will be translated
into weighted nested ω-word automata and simple series of those automata are closed
under intersection and therefore, � can be translated by a product construction.

We will use the boolean formula MATCHING(µ) ∈ ωMSO(Σ, D) which ensures
that µ ∈ Match(N). For details, see Definition 2.22 in Chapter 2.

Definition 5.19. The set of formulas of weighted matching ω-logic over Σ and D, ωML(Σ, D),
denotes the set of all formulas ψ of the form

ψ =
⊕

µ(ϕ⊗MATCHING(µ)) ,

for short ψ =
⊕match

µ ϕ, where ϕ ∈ ωMSO(D, Σ). H

Let ψ =
⊕match

µ ϕ, w ∈ Σω and let σ be a V-assignment. Then,

JψK(w, σ) = ∑
M∈Match(N)

(JϕK(w, σ[µ/M])) .

Let ψ ∈ ωML(Σ, D). We denote by Free(ψ) ⊆ V the set of free variables of ψ. A
formula ψ with Free(ψ) = ∅ is called a sentence. For a sentence ψ, JψK(w, σ) does not
depend on σ. It will therefore be omitted and we only write JψK(w) where the series
JψK : Σω → D is called defined by ψ. A series s : Σω → D is weighted-ωML-definable if
there exists a sentence ψ ∈ ωML(Σ, D) such that JψK = s.

Example 5.20. We here define a logical sentence that defines the same series as in
Example 5.6. Consider the same ω-pv-monoid (R̄, sup, specialavg,+,−∞, 0) as there.

Now, we define some subformulas first. The formula pstart ensures that the first
symbol is a request and the formula pstructure ensures that requests occur directly after
answers. The formula pmatching relates corresponding call and returns and forbids calls
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without returns and vice versa. Furthermore, calls must be returned before giving the
answer to the clients. Finally, the server has to serve clients infinitely often.

next(x, y) = x < y ∧ ¬(∃z. x ≤ z ≤ y)

first(x) = ∀y. x ≤ y

pstart = ∀x. (first(x)→ Preq(x))

pstructure = ∀x∀y. next(x, y)→ (Pans(x)↔ Preq(y))

pmatching = ∀x. Pcall(x)→ ∃y. Pret(y) ∧ µ(x, y)

∧ ∀y. Pret(y)→ ∃x. Pcall(x) ∧ µ(x, y)

∧ ∀x. ∀y.
[
µ(x, y)→ ¬

(
∃z. x ≤ z ≤ y ∧ Pans(z)

)]
∧ ∀x. ∀y.

[
µ(x, y)→

(
(Preq(x) ∧ Pans(y)) ∨ (Pcall(x) ∧ Pret(y))

)]
pinf serving = ∀x. ∃y. (x < y ∧ Preq(y))

ϕunweighted = pstart ∧ pstructure ∧ pmatching ∧ pinf serving

The weights of the words are distributed depending on the symbol and the formula
wt(x) takes care of that for a position x and ϕweighted manages that for every position
in the word and already applies the Valω function to the resulting sequence of weights.

wt(x) =
(

Preq(x) ∨ Pans(x)
)
⊕
(
(Pcall(x) ∨ Pret(x) ∨ Pwait(x))⊗ 1

)
ϕweighted = Valx wt(x)

Then, we quantify over the matching variable and only consider the weight calculated
in ϕweighted if the formula ϕunweighted is true:

ψ =
⊕match

µ ϕunweighted ⊗ ϕweighted

Finally, we have JψK = ‖A‖ for the ωWPDA A of Example 5.6. O

The weighted matching ω-logic, ωML(Σ, D), contains exactly one predicate µ and
exactly one quantification over it. This corresponds to the behavior of pushdown
automata where exactly one pushdown tape is used.

In contrast, the pushdown automaton uses the ω-valuation function Valω only once
per run and never recursively. As formulas ValxValy ϕ ∈ ωMSO(Σ, D) are not always
translatable into automata, we follow Droste and Gastin (2007), Droste and Meinecke
(2012) and Droste and Dück (2017) and define some possible restrictions of our logic.

The set of almost boolean formulas is the smallest set of all formulas of ωMSO(Σ, D)

containing all constants d ∈ D and all boolean formulas which is closed under ⊕ and
⊗.

Definition 5.21 (Droste and Dück, 2017; Droste and Meinecke, 2012). Let ϕ ∈ ωMSO(Σ,
D) and let const(ψ) be the set of all elements of D occurring in ψ. We call ϕ

1. strongly-⊗-restricted if for all subformulas µ⊗ ν of ϕ:
either µ and ν are almost boolean or µ is boolean or ν is boolean.
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2. ⊗-restricted if for all subformulas µ⊗ ν of ϕ:
either µ is almost boolean or ν is boolean.

3. commutatively-⊗-restricted if for all subformulas µ⊗ ν of ϕ:
either const(µ) and const(ν) commute or µ is almost boolean.

4. Val-restricted if for all subformulas Valx µ of ϕ, µ is almost boolean.
5. syntactically restricted if it is both Val-restricted and strongly-⊗-restricted. H

Let now ψ =
⊕match

µ ϕ ∈ ωML(D, Σ). For X ∈ {strongly-⊗, Val, syntactically}, we
also say that ψ is X-restricted if ϕ is X-restricted.

The following will be the third main result of this chapter. Regular ω-pv-monoids
will be defined in the next section on page 116 as they depend on nested ω-word
automata.

Theorem 5.22. Let D be a regular ω-pv-monoid and s : Σω → D be a series.
1. The following are equivalent:

a) s is ωWPDA-recognizable
b) There is a syntactically restricted ωML(Σ, D)-sentence ϕ with JϕK = s.

2. Let D be left-distributive. The following are equivalent:
a) s is ωWPDA-recognizable
b) There is a Val-restricted and ⊗-restricted ωML(Σ, D)-sentence ϕ with JϕK = s.

3. Let D be a cc-ω-valuation semiring. The following are equivalent:
a) s is ωWPDA-recognizable
b) There is a Val-restricted and commutatively-⊗-restricted ωML(Σ, D)-sentence ϕ

with JϕK = s.

This theorem will be proved in Section 5.6.

5.5 Weighted Nested ω-Word Languages

The ωMSO(Σ, D) formulas correspond exactly to weighted nested ω-word languages
as by Droste and Dück (2017) (cf. Alur and Madhusudan, 2004, for the original un-
weighted nested words). In fact, without considering the existential quantification
over the matching relation ∃matchµ, the matching must explicitly be encoded in the
words; the result is a nested word. For the convenience of the reader, weighted nested
ω-words/visibly pushdown languages (Droste and Dück, 2017) are recalled in this
section.

A nested ω-word nw over Σ is a pair (w, ν) = (a0a1a2 . . . , ν) where w ∈ Σω is an
ω-word and ν ∈ Match(N) is a matching relation over N. Let NWω(Σ) denote the
set of all nested ω-words over Σ. For two positions i, j ∈N with ν(i, j), we call i a call
position and j a return position. If i is neither call nor return, we call it an internal position.

Definition 5.23. A weighted stair Muller nested word automaton (ωWNWA) over the
alphabet Σ is a tuple M = (Q, T, I,F ) where
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• Q is a finite set of states,
• T = Tcall ∪ Tint ∪ Tret is a set of transitions, with

– Tcall, Tint : Q× Σ×Q→ D,
– Tret : Q×Q× Σ×Q→ D,

• I ⊆ Q is a set of initial states,
• F ⊆ 2Q is a set of (Muller-accepting) sets of final states. H

A run of the ωWNWA M on the nested ω-word nw = (a0a1a2 . . . , ν) is an infinite
sequence of states ρ = (q0, q1, . . .). We denote by wtM(ρ, nw, i) the weight of the
transition of ρ used at position i ∈N, defined as

wtM(ρ, nw, i) =


Tcall(qi, ai, qi+1), if ν(i, j) for some j > i,

Tint(qi, ai, qi+1), if i is internal,
Tret(qi, qj, ai, qi+1), if ν(j, i) for some j < i.

Hereby, the matching relation ν decides which transition will be used. On return
positions, the transition has additionally access to the state of the automaton before
reading the matching call symbol.

The weight wtM(ρ, nw) of the run ρ on nw is defined by

wtM(ρ, nw) = Valω((wtM(ρ, nw, i))i∈N) .

We call qi for i ∈ N top-level if there exist no positions j, k ∈ N with j < i < k and
ν(j, k). Let

Qtop(ρ) = ρ �top-level

be the subsequence of all top-level positions in the run ρ = (qi)i∈N. Note that Qtop(ρ)

is still an infinite sequence.
A run ρ = (qi)i∈N is successful if q0 ∈ I and Inf(Qtop(ρ)) ∈ F . The behavior of M is

the function ‖M‖ : NWω(Σ)→ D defined by

‖M‖(nw) = ∑
(
wtM(ρ, nw) | ρ successful

)
.

Every function s : NWω(Σ) → D is called a nested ω-word series (nw-series). Ev-
ery nw-series s which is the behavior of some ωWNWA over D is called ωWNWA-
recognizable.

Note that the definition here differs slightly from the definitions given by Droste
and Dück (2017) as we do not allow pending calls and pending returns. In Droste and
Dück (2017), it is possible that ν matches i ∈N as a pending return like ν(−∞, i) or as
a pending call like ν(i, ∞). We do not consider these possibilities here. Instead, we will
later assume a push in the ωWPDA without a succeeding pop not to be matched.

We will now discuss how ωMSO is an equivalent logic to ωWNWAs. Note that
ωMSO(Σ, D) formulas may contain the free variable µ. Given a nested word nw =

(w, ν), we let σ(µ) = ν and make no difference between (w, σ) ∈ Σω × ({µ} →
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Match(N)) and the nested word nw. We extend the semantics definitions as follows.
Let ϕ ∈ ωMSO(Σ, D) and Free(ϕ) ⊆ {µ}, then we define JϕKnw : NWω(Σ) → D by
letting

JϕKnw(w, ν) = JϕK(w, σ) for σ(µ) = ν .

Let d ∈ D denote the constant series with value d, i.e., d(nw) = d for each nw ∈
NWω(Σ).

An ω-pv-monoid D is called regular if all constant series of D are ωWNWA-recog-
nizable. In other words, D is regular if for any alphabet Σ, we have: For each d ∈ D,
there exists an ωWNWA Ad with ‖Ad‖ = d.

Note that here, regularity of ω-pv-monoids is defined by the means of ωWNWAs. In
the proof of Theorem 5.24, this is used in the structural induction as a logical formula
ϕ = d, for a weight d, can otherwise not necessarily be translated into an automaton.

Sufficient properties for an ω-pv-monoid to be regular are shown by Droste and Mei-
necke (2012). Especially left-multiplicative and left-Valω-distributive ω-pv-monoids
are regular because we can easily construct ωWNWAs (and even ωWFAs) for every
constant series. All ω-pv-monoids in Example 5.2 are regular.

Theorem 5.24 (Droste and Dück, 2017). Let D be a regular ω-pv-monoid and consider the
nw-series s : NWω(Σ)→ D.

1. The following are equivalent:
a) s is ωWNWA-recognizable
b) There is a syntactically restricted ωMSO(Σ, D)-formula ϕ with Free(ϕ) ⊆ {µ}

and JϕKnw = s.
2. Let D be left-distributive. The following are equivalent:

a) s is ωWNWA-recognizable
b) There is a Val-restricted and⊗-restricted ωMSO(Σ, D)-formula ϕ with Free(ϕ) ⊆
{µ} and JϕKnw = s.

3. Let D be a cc-ω-valuation semiring. The following are equivalent:
a) s is ωWNWA-recognizable
b) There is a Val-restricted and commutatively-⊗-restricted ωMSO(Σ, D)-formula ϕ

with Free(ϕ) ⊆ {µ} and JϕKnw = s.

The mapping π : NWω(Σ) → Σω removes the nesting relation from the nested
word, i.e., for nw = (w, ν), we define π(nw) = w. This can be extended to nw-series
s : NWω(Σ) → D by setting π(s)(w) = ∑nw∈π−1(w) s(nw) which equals π(s)(w) =

∑M∈Match(N) s(w, ∅[µ/M]).
The following is crucial for the rest of the chapter.

Lemma 5.25. Let s : NWω(Σ)→ D be an ωWNWA-recognizable nw-series. Then the series
π(s) : Σω → D is ωWPDA-recognizable.

For unweighted languages, there is a similar proof by Blass and Gurevich (2006)
and Droste, Dziadek and Kuich (2020a). Here, the proof is more complicated because
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the acceptance conditions differ. We have to construct a Büchi-accepting pushdown
automaton from a stair Muller nested-word automaton.

Proof. Let M = (Q, T, I,F ) be an ωWNWA with ‖M‖ = s. By Theorem 5.9, it suffices to
construct a Muller-accepting ωWPDA M′ = (Q′, Γ′, T′, I′,F ′, wt′) with ‖M′‖ = π(s).

Let T = Tcall ∪ Tint ∪ Tret. Then Q′ = Q× {0, 1}, Γ′ = Q′ and I′ = I × {1} and

T′ =
{(

(p, i), a, (q, 0), (↓, (p, i))
)
| Tcall(p, a, q) 6= 0, i ∈ {0, 1}

}
∪{(

(p, i), a, (q, i), #
)
| Tint(p, a, q) 6= 0, i ∈ {0, 1}

}
∪{(

(p, 0), a, (q, i), (↑, (p′, i))
)
| Tret(p, p′, a, q) 6= 0, i ∈ {0, 1}

}
.

The new automaton M′ pushes states onto the stack. This allows M′ to simulate M as
the nested-word automaton has access to the states of matched calls.

Additionally, a state (q, 1) is top-level and any state (q, 0) is not. When pushing
something onto the stack, the next state is no longer top-level. Internal transitions do
not change if the automaton is top-level or not. Finally, popping a state means that
the new state is top-level exactly if the popped state was top-level before. Note that
popping from top-level state (p, 1) is never possible.

The weights are directly transferred by setting

wt′
(
(p, i), a, (q, 0), (↓, (p, i))

)
= Tcall(p, a, q) ,

wt′
(
(p, i), a, (q, i), #

)
= Tint(p, a, q) ,

wt′
(
(p, 0), a, (q, i), (↑, (p′, i))

)
= Tret(p, p′, a, q), for i ∈ {0, 1} .

Finally, we set
F ′ =

{
(F× {1}) ∪ (S× {0}) | F ∈ F , S ⊆ Q

}
.

This means, that the original states in the sets F ∈ F are accepting if they are top-level
and in between top-level positions, the automaton can visit arbitrary subsets of states
that are not top-level.

5.6 Equivalence of Logic and Automata

This section proves the equivalence of ωML(Σ, D) and weighted simple ω-pushdown
automata.

Let a = (a1, . . . , an) ∈ A1 × . . .× An be a tuple. Then we define as in Section 2.6 for
1 ≤ i ≤ n the ith projection of a by pri(a) = ai.

Lemma 5.26. Let D be a regular ω-pv-monoid and s : Σω → D be an ωWPDA-recognizable
series. Then s is ωML-definable by a syntactically restricted ωML(D, Σ)-sentence.
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Proof. By assumption, there exists an ωWPDA M = (Q, Γ, T, I, F, wt) over Σ and D
with ‖M‖ = s. Let T = {t1, . . . , tm} be an enumeration of the transitions. We define a
syntactically restricted ωML(Σ, D)-sentence θ such that JθK = s as follows. We proceed
similarly to the lines of Droste and Gastin (2007), Vogler, Droste and Herrmann (2016)
and Droste and Dück (2017).

We defined our logic in layers and the first layer, the boolean ωMSO(Σ, D) formulas
are equivalent to unweighted ωMSO(Σ) formulas (see note and definition on page 111).
We also defined ωWPDA and ωPDA similar in a way such that we can reuse the
ωMSO(Σ) formulas that we used in the proof of Lemma 2.31 to prove our BET-Theorem
of unweighted ω-context-free languages.

Thus, let ψsuccessful be the ωMSO(Σ, D) formula defined in Equation (2.8) on page 32
that is true only for successful runs of M. This formula internally uses the set of
second-order variables V = {Xt | t ∈ T} to partition the positions in the input word
corresponding to the transition used at that position.

The second step is to add weights. First, we will define an auxiliary formula

((x ∈ X)→ d) = (x /∈ X)⊕ ((x ∈ X)⊗ d) ,

which is 1 if x /∈ X and d if x ∈ X.
We use the weight of one run

θweight = Valx
(
⊗

t∈T
(x ∈ Xt → wt(t))

)
to define

θwt run = ψsuccessful ⊗ θweight ,

which is either 0 for non-successful runs or Valω(wt(ρ)) for successful runs ρ.
Finally, let θ ∈ ωML(Σ, D) be the sentence defined as

θ =
⊕match

µ

⊕
Xt1

⊕
Xt2
· · ·⊕Xtm

θwt run .

The formula θ sums up all possible runs. It tries all possible ways to use the stack (by
matching different positions) and tries all possible transitions.

Then,

JθK(w)

= ∑
M∈Match(N)

∑
I1⊆N

∑
I2⊆N

· · · ∑
Im⊆N

Jθwt runK(w, ∅[µ/M, Xt1 /I1, Xt2 /I2, . . . , Xtm /Im])

= ∑
(
Jθwt runK(w, σρ) | σρ assignment for run ρ of M on w

)
= ∑

(
JθweightK(w, σρ) | σρ assignment for successful run ρ of M on w

)
= ∑(Valω(wt(ρ)) | ρ successful run of M on w)

= ‖M‖(w) .

The formula θweight is the only subformula containing Valx and its argument is almost
boolean. The formula θwt run is strongly-⊗-restricted as ψsuccessful is boolean. It follows
that θ is syntactically restricted.

118



5.6 Equivalence of Logic and Automata

Lemma 5.27. Let D be a regular ω-pv-monoid.
1. Let ψ be a syntactically restricted ωML(Σ, D)-sentence. Then JψK : Σω → D is

ωWPDA-recognizable.
2. Let D be left-distributive and ψ be a Val-restricted and⊗-restricted ωML(D, Σ)-sentence.

Then JψK is ωWPDA-recognizable.
3. Let D be a cc-ω-valuation semiring and ψ be a Val-restricted and commutatively-⊗-

restricted ωML(Σ, D)-sentence. Then JψK is ωWPDA-recognizable.

Proof. In all three cases, let ψ =
⊕Match

µ ϕ for ϕ ∈ ωMSO(Σ, D). Apply Theorem 5.24 to
infer that JϕKnw is ωWNWA-recognizable. Now, we use the projection π : NWω(Σ)→
Σω of Section 5.5 to get

π(JϕKnw)(w) = ∑
M∈Match(N)

(JϕK(w, ∅[µ/M])) = JψK(w) .

By Lemma 5.25, JψK = π(JϕKnw) is ωWPDA-recognizable.

Proof of Theorem 5.22. This is immediate by Lemmas 5.26 and 5.27.
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CHAPTER 6

Conclusion and Outlook

We first provided a BET-Theorem (Büchi, 1960; Elgot, 1961; Trakhtenbrot, 1961) for
unweighted ω-context-free languages. The ω-Kleene closure enabled us to construct
ω-context-free grammars in Greibach normal form. Then we used those grammars in
Greibach normal form to construct a new normal form for pushdown automata, the
simple ω-pushdown automata. Simple ω-pushdown automata do not use ε-transitions;
in the literature, this is also called a realtime pushdown automaton. Realtime pushdown
automata read a symbol of the input word in every transition — exactly like context-
free grammars in Greibach normal form generate a letter in every derivation step.
Additionally, each derivation step of context-free grammars in (quadratic) Greibach
normal form increases the number of non-terminals in the sentential form by at most
one. We showed that for realtime pushdown automata it suffices to handle at most
one stack symbol per transition. Here the Greibach normal form provides exactly the
properties needed to construct simple ω-pushdown automata.

Then, we introduced the ω-matching logic. A subset of our logic is similar to a logic
by Alur and Madhusudan (2009) and therefore, we can apply their BET-Theorem for
regular nested ω-word languages and prove the expressive equivalence of our logic
and a projection of nested ω-word automata, i.e., together with our results on simple
pushdown automata, we have that our logic is expressively equivalent to ω-context-free
languages.

Note that we chose to use simple pushdown automata because they ease the proof of
our BET-Theorem significantly, maybe they even allow the proof in the first place. The
reason for this lies in something we could call the “essence of context-free languages”.
Our logic uses matching relations that resemble the brackets in Dyck languages. Dyck
languages were introduced as the basis of the famous Chomsky-Schützenberger The-
orem (Chomsky and Schützenberger, 1963). The correlation described above shows
us that the same essentials can already be found in simple pushdown automata and
gained from the Greibach normal form of context-free grammars.

In the next part of this thesis, we took similar steps to the above to heavily generalize
our BET-Theorem but also our simple pushdown automata to weighted languages.

Thus, we extended the characterization of ω-algebraic series so that we can use the
ω-Kleene closure to transfer the property of Greibach normal form from algebraic
systems to mixed ω-algebraic systems and to ω-algebraic systems. This generalizes a
fundamental property of context-free languages.

We believe that the same technique can be used to transfer other properties of
algebraic systems to ω-algebraic systems. For instance, Cohen and Gold (1977) use
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this technique also for the elimination of chain rules, for the Chomsky normal form
and for effective decision methods of emptiness, finiteness and infiniteness.

Furthermore, we applied the new Greibach normal form for the construction of
weighted simple reset pushdown automata. We extended our knowledge about push-
down matrices by several properties. Then we proved that our construction of simple
reset pushdown automata is correct and every algebraic series is the behavior of a
simple reset pushdown automaton.

We investigated infinite applications of simple reset pushdown matrices. The con-
struction that we used for finite words had to be extended to exactly model the canonical
solutions of ω-algebraic systems. With this new construction, we were able to prove
that every ω-algebraic series is the behavior of a simple ω-reset pushdown automaton.

The model of simple pushdown automata seems to be a very natural model in itself.
Simple pushdown automata do not use ε-transitions and only change one symbol of the
stack per transition. For our BET-Theorem, these were exactly the properties needed for
our proof. We think that simple pushdown automata, thought of as a normal form for
pushdown automata, might help also in other proofs. Additionally, simple pushdown
automata seem to have desirable practical benefits as they provide a very predictable
model. Namely, they need exactly one transition per input symbol, the stack size is
bounded by the length of the input read so far and inversely, to empty a stack of size n,
at least n more input symbols must be read.

Simple pushdown automata occur when applying general homomorphisms to nested-
word automata of finite words (Blass and Gurevich, 2006), to nested-word automata
of infinite words (Chapter 2) and to weighted nested ω-word automata (Chapter 5).
They have been used for a Büchi-type logical characterization of timed pushdown
languages of finite words (Droste and Perevoshchikov, 2015a) and also in the weighted
setting, simple pushdown automata of finite words have been used by Droste and
Perevoshchikov (2015b).

As indicated in the introduction, we only describe one inclusion for the relation
between ω-algebraic series and simple ω-reset pushdown automata over commutative
complete semirings: all ω-algebraic series can be represented as the behavior of a simple
ω-reset pushdown automaton. It is currently open if the behavior of every simple
ω-reset pushdown automaton is an ω-algebraic series (cf. Figure 1.4 in Chapter 1).
Although this seems obvious, for this direction, we still need a stronger version of the
results by Droste, Ésik and Kuich (2017) and a generalization to infinite words of a result
by Kuich and Salomaa (1986) that relates reset pushdown automata to pushdown
automata. Droste, Ésik and Kuich (2017) show that for a weighted ω-pushdown
automaton P , there exists a mixed ω-algebraic system such that the behavior ‖P‖ of P
is a component of a solution of this system. However, for our purposes here, we would
need that ‖P‖ is a component of a canonical solution of this system. This is however
still open.

The class of weighted ω-context-free languages, the ω-algebraic series, are a com-
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paratively young class of weighted languages. Several traditional formal language
problems have already been solved for this class, but others are still untouched. It
seems worthwhile to investigate this class even further.

Finally, we defined ω-valuation monoids and ω-pushdown automata with weights
from ω-valuation monoids. We generalized a fundamental result of unweighted au-
tomata theory: Büchi acceptance and Muller acceptance are expressively equivalent;
we can show that this remains the case for weighted simple pushdown automata of
infinite words.

For the class of languages recognized by our automata, we proved several closure
properties and a Nivat-like decomposition theorem. It states that the weighted lan-
guages in our class are induced by an unweighted context-free language and a very
simple weighted part; the two components can be intersected and a projection of this
intersection gives us the original language.

The last main result is a logic that is expressively equivalent to weighted simple
ω-pushdown automata. This logic has three layers. The first layer basically describes
nested ω-word-languages. The first two layers together describe weighted nested ω-
word-languages. The third layer existentially quantifies the matching variable and
corresponds to a projection from nested words to context-free languages. In this way,
we can apply the BET-Theorem for weighted regular nested ω-word-languages to obtain
our equivalence result.

The present result raises the question of how weighted simple ω-pushdown automata
over ω-valuation monoids and therefore also our weighted matching ω-logic relate to a
corresponding notion of weighted context-free ω-languages, the ω-algebraic series; we
described this for weighted simple ω-pushdown automata over commutative complete
star-omega semirings in Chapter 4. It remains open however for ω-valuation monoids.

The weighted logic has to be restricted to gain the desired equivalence result. We
borrow three different restrictions from the corresponding result on weighted nested
ω-word automata and accordingly obtain inclusions between the restricted subclasses.
It is open however whether these inclusions remain strict after applying the projection
π from nested words to words.

For our weighted BET-Theorem, we also borrow the restriction of ω-valuation
monoids to be regular. Regularity is defined by the means of ωWNWA. In our weighted
BET-Theorem, Theorem 5.22, it would be desirable to generalize the notion of regular ω-
pv-monoids to only require ωWPDA instead of ωWNWA. The classical inductive proof
method in the used BET-Theorem of weighted nested ω-word automata (Theorem 5.24)
no longer works in this case. However, it seems that ω-pv-monoids where constant
series are ωWPDA-recognizable but not ωWNWA-recognizable are very artificial.
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Selbstständigkeitserklärung
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