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Abstract

We define a new normal form for weighted pushdown automata. The new
type of automaton uses a stack but has only limited access to it. Only three
stack commands are available: popping a symbol, pushing a symbol or leaving
the stack unaltered. Additionally, ε-transitions are not used. We prove that
this automaton model can recognize all weighted context-free languages (i.e.,
generates all algebraic power series).
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1. Introduction

Context-free languages model many aspects of programming languages.
Adding weights allows a quantitative view of these aspects. Weighted push-
down automata were introduced by Kuich, Salomaa [11] where many funda-
mental results are established. A survey on weighted pushdown automata
and their series is given in Petre, Salomaa [12]. In [7], a Chomsky-Schützen-
berger type result for weighted pushdown automata was established. Re-
cently, in [6], a weighted logic with the same expressive power as weighted
pushdown automata was developed.

Some applications need a specialized automaton model. In [4], to prove
the equivalence of ω-context-free languages and a logical formalism, we use
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a restricted pushdown automaton. This restricted version recognizes all
ω-context-free languages and behaves like some kind of normal form for
pushdown automata. These restricted pushdown automata do not allow
ε-transitions and use the stack differently. Computations start and end with
an empty pushdown tape. Additionally, only three stack commands are used:
popping a symbol, pushing a symbol or leaving the stack unaltered. Note
that therefore, it is only possible to read the topmost stack symbol by pop-
ping it.

Even though an equivalent idea is used in [2] to prove that pushdown
automata can recognize the projections of nested words, it seems that this
restricted model has not attracted the attention it deserves.

The goal of this paper is to establish a weighted model of such pushdown
automata on finite words. This extension shows that the basic model is very
natural. Furthermore, it will be needed for an equivalence result between
weighted ω-context-free languages and weighted logical formalisms for infinite
words (which is currently work in progress).

The paper is structured as follows. Section 2 explains some basics and in-
troduces pushdown matrices that will later be used similarly to an adjacency
matrix of the graph representing an automaton.

For weighted pushdown automata there exists already the notion of a
reset pushdown automaton (cf. [11]) that starts and ends with an empty
pushdown tape and that naturally allows to push onto an empty tape. We
define the corresponding reset pushdown matrices in Section 3.

The restrictions we discussed above are defined as simple reset pushdown
matrices in Section 4. Here we also prove some basic properties for these
matrices.

The last section, Section 5, defines how the matrix is used in a simple re-
set pushdown automaton. Afterwards, we prove that simple reset pushdown
automata generate all algebraic power series (i.e., weighted context-free lan-
guages, cf. [11]). The proof starts with algebraic systems (cf. [11]) in Greibach
normal form and constructs for every such system an equivalent simple reset
pushdown automaton. Additionally, we introduce a new normal form for
algebraic power series.

2. Preliminaries

For the convenience of the reader, we quote definitions and results from
Ésik, Kuich [9].
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A semiring S is called complete if it has sum operations for all families
(ai | i ∈ I) of elements of S, where I is an arbitrary index set, such that the
following conditions are satisfied (see Conway [3], Eilenberg [8], Kuich [10]):

(i)
∑
i∈∅

ai = 0,
∑
i∈{j}

ai = aj,
∑
i∈{j,k}

ai = aj + ak for j 6= k ,

(ii)
∑
j∈J

(∑
i∈Ij

ai
)

=
∑
i∈I

ai , if
⋃
j∈J

Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′ ,

(iii)
∑
i∈I

(c · ai) = c ·
(∑
i∈I

ai
)
,

∑
i∈I

(ai · c) =
(∑
i∈I

ai
)
· c .

This means that a semiring S is complete if it has “infinite sums” (i) that
are an extension of the finite sums, (ii) that are associative and commutative
and (iii) that satisfy the distribution laws.

A semiring S equipped with an additional unary star operation ∗ : S → S
is called a starsemiring. In complete semirings for each element a, the star
a∗ of a is defined by

a∗ =
∑
j≥0

aj .

Hence, each complete semiring is a starsemiring, called a complete starsemi-
ring.

Following Kuich, Salomaa [11] and Kuich [10], we introduce pushdown
transitions matrices (see also Ésik, Kuich [9]). Let Γ be an alphabet, called
pushdown alphabet and let n ≥ 1. A matrix M̄ ∈ (Sn×n)Γ∗×Γ∗ is termed a
pushdown matrix (with pushdown alphabet Γ and state set {1, . . . , n}) if

(i) for each p ∈ Γ there exist only finitely many blocks M̄p,π, π ∈ Γ∗, that
are unequal to 0;

(ii) for all π1, π2 ∈ Γ∗,

M̄π1,π2 =


M̄p,π, if there exist p ∈ Γ, π, π′ ∈ Γ∗ with

π1 = pπ′ and π2 = ππ′,

0, otherwise.

A matrix M ∈ (Sn×n)Γ∗×Γ∗ is called row-finite if {π′ |Mπ,π′ 6= 0} is finite
for all π ∈ Γ∗. We denote the identity matrix by E.
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Mappings r of Σ∗ into S are called series. The collection of all such series
r is denoted by S〈〈Σ∗〉〉. We denote by S〈Σ〉, S〈{ε}〉 and S〈Σ ∪ {ε}〉 the
polynomials with support in Σ, {ε} and Σ∪ {ε}, respectively. See [11], p. 7,
for more information.

3. Reset Pushdown Matrices

In the sequel, S is assumed to be a complete starsemiring.
Let Γ be a pushdown alphabet and {1, . . . , n} for n ≥ 1 be a set of states.
A reset matrix MR ∈ (Sn×n)Γ∗×Γ∗ is a row-finite matrix such that

(MR)π1,π2 = 0 for π1, π2 ∈ Γ∗ with π1 6= ε .

A reset pushdown matrix M ∈ (Sn×n)Γ∗×Γ∗ is the sum of a reset matrix
MR and a pushdown matrix M̄ ,

M = MR + M̄ .

Intuitively, the reset pushdown matrix behaves like a pushdown matrix
(i.e., it models the LIFO property of the pushdown tape) but additionally
inherits from reset matrices the ability to push symbols onto the empty push-
down tape.

For the convenience of the reader, we recall the following result.

Theorem 1 (Corollary 2 of [5]). Let M̄ ∈ (Sn×n)Γ∗×Γ∗ be a pushdown matrix.
Then, for all π1, π2 ∈ Γ∗,

(M̄∗)π1π2,ε = (M̄∗)π1,ε(M̄
∗)π2,ε .

Now we show

Theorem 2. Let M = MR + M̄ be a reset pushdown matrix. Then

(M∗)π,ε = (M̄∗)π,ε(M
∗)ε,ε for π ∈ Γ∗ .

Proof. The proof is by induction on the length of π. The case π = ε is trivial.
We assume that Theorem 2 is proven for π ∈ Γ∗ and derive it for pπ with
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p ∈ Γ as follows, where for t = 1 we have Mpπ,π1π = Mpπ,π:

(M∗)pπ,ε =
∑
t≥1

∑
π1,...,πt−1∈Γ+

Mpπ,π1πMπ1π,π2π · · ·Mπt−1π,π(M∗)π,ε

=
∑
t≥1

∑
π1,...,πt−1∈Γ+

Mp,π1Mπ1,π2 · · ·Mπt−1,ε(M
∗)π,ε

=
(∑
t≥1

(M̄ t)p,ε
)
(M̄∗)π,ε(M

∗)ε,ε

= (M̄∗)p,ε(M̄
∗)π,ε(M

∗)ε,ε

= (M̄∗)pπ,ε(M
∗)ε,ε .

The last equality above is implied by Theorem 1.

Corollary 3. Let M = MR + M̄ be a reset pushdown matrix. Then

(M∗)p1...pk,ε = (M̄∗)p1,ε · · · (M̄∗)pk,ε(M
∗)ε,ε ,

for p1, . . . , pk ∈ Γ (k ≥ 0).

Theorem 4. Let M = MR + M̄ be a reset pushdown matrix. Then the
Sn×n-algebraic system with variables xε, x̄p (p ∈ Γ)

xε =
∑
π∈Γ∗

Mε,πx̄πxε + E ,

x̄p =
∑
π∈Γ∗

M̄p,πx̄π, p ∈ Γ ,

where x̄ε = E, x̄pπ = x̄px̄π for p ∈ Γ and π ∈ Γ∗,
has a solution

xε = (M∗)ε,ε, x̄p = (M̄∗)p,ε, p ∈ Γ .

Proof. By Theorem 2, we obtain

(M∗)ε,ε =
∑
π∈Γ∗

Mε,π(M∗)π,ε + E

=
∑
π∈Γ∗

Mε,π(M̄∗)π,ε(M
∗)ε,ε + E ,

and

(M̄∗)p,ε =
∑
π∈Γ∗

M̄p,π(M̄∗)π,ε .

By Theorem 1, we have x̄π = (M̄∗)π,ε for each π ∈ Γ∗. The result follows.
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Corollary 5. Let S be a commutative complete starsemiring and Σ be an
alphabet. If M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ is a reset pushdown matrix, then the
algebraic system of Theorem 4 has a unique solution.

Proof. The algebraic system is strict and thus has a unique solution; see [11],
p. 302, for details.

We denote by Salg〈〈Σ∗〉〉 the collection of algebraic series. See [10],
pp. 622-623, for details.

Corollary 6. Let S be a commutative complete starsemiring and Σ be an
alphabet. If M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ is a reset pushdown matrix, then the
components of the unique solution of the algebraic system of Theorem 4

(M∗)ε,ε, (M̄
∗)p,ε, p ∈ Γ ,

are in (Salg〈〈Σ∗〉〉)n×n.

Proof. This follows from the definition of Salg〈〈Σ∗〉〉, see [10], pp. 622-623,
for more information.

4. Simple Reset Pushdown Matrices

For the rest of this paper, the complete starsemiring S is additionally
assumed to be commutative; and Σ denotes an alphabet.

A reset pushdown matrix M is called simple if M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ for
some n ≥ 1 and for all p, p1 ∈ Γ,

Mε,p, Mp,ε, Mp,p = Mε,ε and Mp,p1p = Mε,p1 ,

are the only blocks Mπ,π′ , where π ∈ {ε, p} and π′ ∈ Γ∗, that may be unequal
to the zero matrix 0. Hence, a simple reset pushdown matrix M is defined
by its blocks Mε,ε and Mp,ε, Mε,p (p ∈ Γ).

If M is a simple reset pushdown matrix then the algebraic system of
Theorem 4 has the form (1)

xε = Mε,εxε +
∑
p∈Γ

Mε,px̄pxε + E ,

x̄p = M̄p,ε + M̄p,px̄p +
∑
p1∈Γ

M̄p,p1px̄p1x̄p , p ∈ Γ.
(1)
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The variables of this system are xε, x̄p (p ∈ Γ). They are variables for
matrices in (S〈〈Σ∗〉〉)n×n.

Our next lemma states that for simple reset pushdown matrices, emptying
the pushdown tape with contents p (i.e., applying (M̄∗)p,ε) has the same effect
as emptying first the pushdown tape with contents ε (i.e., applying (M∗)ε,ε)
and then reading p in a single move (i.e., applying Mp,ε). This is due to the
fact that p can not be replaced by any other pushdown symbol, but can only
be erased. Note that the pushdown matrix M̄ cannot continue calculations
from the pushdown tape ε.

Lemma 7. Let M = MR + M̄ be a simple reset pushdown matrix. Then

(M̄∗)p,ε = (M∗)ε,εMp,ε .

Proof. We have

(M̄∗)p,ε =
∑
t≥0

∑
π1,...,πt−1∈Γ∗

M̄p,π1p · · · M̄πt−1p,pM̄p,ε

=
∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1p · · ·Mπt−1p,pMp,ε

=
(∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε

)
Mp,ε

=
∑
t≥0

(M t)ε,εMp,ε = (M∗)ε,εMp,ε .

For t = 0 and t = 1 the respective summands are Mp,ε and Mp,pMp,ε.
Observe that the bottom p can be never replaced by another pushdown

symbol p1 6= p; it can only be emptied. Also observe that we use Mp,p = Mε,ε

in the third equality.

Our next lemma is similar to Lemma 7. This time, a simple reset push-
down matrix (M∗)p,ε) is considered. Therefore, in the end, it is possible to
empty the pushdown tape with contents ε (i.e., apply (M∗)ε,ε).

Lemma 8. Let M be a simple reset pushdown matrix. Then

(M∗)p,ε = (M∗)ε,εMp,ε(M
∗)ε,ε
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Proof. We obtain

(M∗)p,ε =
∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mp,π1p · · ·Mπt−1p,pMp,ε(M
∗)ε,ε

=
(∑
t≥0

∑
π1,...,πt−1∈Γ∗

Mε,π1 · · ·Mπt−1,ε

)
Mp,ε(M

∗)ε,ε

= (M∗)ε,εMp,ε(M
∗)ε,ε .

Theorem 9. Let M be a simple reset pushdown matrix. Then (M∗)ε,ε is the
unique solution of

x = Mε,εx+
∑
p∈Γ

Mε,pxMp,εx+ E .

Proof. By Theorem 4, ((M∗)ε,ε, ((M̄
∗)p,ε)p∈Γ) is the solution of (1). Hence,

we obtain by Lemma 7

(M∗)ε,ε = Mε,ε(M
∗)ε,ε +

∑
p∈Γ

Mε,p(M̄
∗)p,ε(M

∗)ε,ε + E

= Mε,ε(M
∗)ε,ε +

∑
p∈Γ

Mε,p(M
∗)ε,εMp,ε(M

∗)ε,ε + E

This proves that (M∗)ε,ε is a solution of the equation of our theorem. Since
M ∈ ((S〈Σ〉)n×n)Γ∗×Γ∗ , this equation is strict and thus has a unique solution.

Now we consider the (S〈Σ ∪ {ε}〉)n×n-algebraic system of Theorem 9.
Recall that the variable x is a variable for (S〈〈Σ∗〉〉)n×n. So we substitute
the n× n-matrix X = (xi,j)1≤i,j≤n of variables for S〈〈Σ∗〉〉 for the variable x
and we get the strict S〈Σ ∪ {ε}〉-algebraic system

X = Mε,εX +
∑
p∈Γ

Mε,pXMp,εX + E . (2)

Let Y = {xi,j | 1 ≤ i, j ≤ n} be the set of the variables of (2). Then the
support of the right sides of equations of (2) is contained in {ε}∪ΣY ∪ΣY ΣY .
Hence, this system is of Greibach normal form type and at the same time of
operator normal form type (see Ésik, Kuich [9], Section 2.2.4).
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5. Simple Reset Pushdown Automata

A reset pushdown automaton starts its computations with empty tape
and finishes them with empty tape and final states.

A reset pushdown automaton (with input alphabet Σ) A = (n,Γ, I,M, P )
is given by

• a set of states {1, . . . , n}, n ≥ 1,

• a pushdown alphabet Γ,

• a reset pushdown matrix M ∈ ((S〈Σ∪ {ε}〉)n×n)Γ∗×Γ∗ called transition
matrix,

• a row vector I ∈ (S〈{ε}〉)1×n, called initial state vector,

• a column vector P ∈ (S〈{ε}〉)n×1, called final state vector.

The behavior ‖A‖ of a reset pushdown automaton A is defined by

‖A‖ = I(M∗)ε,εP .

A reset pushdown automaton A = (n,Γ, I,M, P ) is called simple if M is
a simple reset pushdown matrix.

Given a series r ∈ Salg〈〈Σ∗〉〉, we want to construct a simple reset push-
down automaton with behavior r. By Theorems 5.10 and 5.4 of [10], r is
a component of the unique solution of a strict algebraic system in binary
Greibach normal form.

We first consider the algebraic power series r to have (r, ε) = 0. So we
assume without loss of generality that r is the x1-component of the unique
solution of the algebraic system (3) with variables x1, . . . , xn

xi = pi, 1 ≤ i ≤ n,

of the form

xi =
∑

1≤j,k≤n

∑
a∈Σ

(pi, axjxk)axjxk +∑
1≤j≤n

∑
a∈Σ

(pi, axj)axj +∑
a∈Σ

(pi, a)a .

(3)
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We now show the construction of the simple reset pushdown automaton
As = (n+1,Γ, Is,M, P ) for 1 ≤ s ≤ n with r = ‖A1‖:
We let Γ = {x1, . . . , xn}; we also denote the state n+1 by f ; the entries of M
of the form (Mxk,xk)i,j, (Mxk,ε)i,j, (Mε,xk)i,j, (Mε,ε)i,j, (Mε,ε)i,f for 1 ≤ i, j, k ≤
n, that may be unequal to 0 are

(Mε,xk)i,j =
∑
a∈Σ

(pi, axjxk)a ,

(Mxk,xk)i,j = (Mε,ε)i,j =
∑
a∈Σ

(pi, axj)a ,

(Mxk,ε)i,k = (Mxk,xk)i,f = (Mε,ε)i,f =
∑
a∈Σ

(pi, a)a ;

we further put (Is)s = ε, (Is)i = 0, for 1 ≤ i ≤ s − 1 and s + 1 ≤ i ≤ n + 1;
finally let Pf = ε and Pj = 0 for 1 ≤ j ≤ n.

Intuitively, the variables in the algebraic system are simulated by states
in the simple reset pushdown automaton As. By the binary Greibach normal
form, only two variables on the right-hand side are allowed. The first is
modeled directly by changing the state, the second is pushed to the pushdown
tape and the state is changed to it later when the variable is popped again.
The special final state f will only be used as the last state.

Note that (Mxk,xk)i,f allows to change to the final state with a non-empty
pushdown tape. This is an artificial addition to fit the definition of simple
reset pushdown matrices. Even though the automaton can enter the final
state too early, it can not continue from there as it is a sink.

Observe that ‖As‖ = Is(M
∗)ε,εP = ((M∗)ε,ε)s,f for 1 ≤ s ≤ n. Subse-

quently we will show that ‖A1‖ = r.
This simple reset pushdown matrix M is called the simple pushdown

matrix induced by the binary Greibach normal form (3). The simple reset
pushdown automata As, 1 ≤ s ≤ n, are called the simple reset pushdown
automata induced by the binary Greibach normal form (3).

The next lemma formalizes the meaning of the pushdown tape for induced
simple reset pushdown matrices. Intuitively, going from state j to the final
state f and erasing the variable xk from the pushdown tape on the way
(i.e., applying ((M∗)xk,ε)j,f ) has the same effect as first going from state
j to the final state f without changing the pushdown tape (i.e., applying
((M∗)ε,ε)j,f ) and then restarting in state k (i.e., applying ((M∗)ε,ε)k,f ). This
results from the definition of As: popping a variable from the pushdown tape
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and changing to its state has the same weight as changing to the final state
instead. It allows the automaton to process the variables in the algebraic
system individually.

Lemma 10. Let M be a simple reset pushdown matrix induced by a binary
Greibach normal form (3). Then, for all 1 ≤ j, k ≤ n,

((M∗)xk,ε)j,f = ((M∗)ε,ε)j,f ((M
∗)ε,ε)k,f .

Proof. We obtain

((M∗)ε,ε)j,f = ((M+)ε,ε)j,f = ((M∗M)ε,ε)j,f

=
∑

1≤t1≤f

((M∗)ε,ε)j,t1(Mε,ε)t1,f +∑
1≤t1≤f

∑
1≤t≤n

((M∗)ε,xt)j,t1(Mxt,ε)t1,f

= ((M∗)ε,εMε,ε)j,f

since (Mxt,ε)t1,f = 0 for all 1 ≤ t1 ≤ f and 1 ≤ t ≤ n by our construction.
We now obtain, by Lemma 8,

((M∗)xk,ε)j,f =
∑

1≤t1,t2≤f

((M∗)ε,ε)j,t1(Mxk,ε)t1,t2((M
∗)ε,ε)t2,f

=
∑

1≤t1≤f

((M∗)ε,ε)j,t1(Mε,ε)t1,f ((M
∗)ε,ε)k,f

= ((M∗)ε,εMε,ε)j,f ((M
∗)ε,ε)k,f

= ((M∗)ε,ε)j,f ((M
∗)ε,ε)k,f .

The second equality is implied by the fact that

(Mxk,ε)t1,k = (Mε,ε)t1,f and

(Mxk,ε)t1,t2 = 0 for t2 6= k .

Now we show that the constructed automata realize the algebraic sys-
tem (3).

Theorem 11.

(‖A1‖, . . . , ‖An‖) = (((M∗)ε,ε)1,f , . . . , ((M
∗)ε,ε)n,f )

is the unique solution of the algebraic system (3). In particular, r = ‖A1‖.
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Proof. We obtain, for 1 ≤ i ≤ n, by substituting into the right sides of (3)
and by Lemma 10,∑

1≤j,k≤n

∑
a∈Σ

(piaxjxk)a((M∗)ε,ε)j,f ((M
∗)ε,ε)k,f +∑

1≤j≤n

∑
a∈Σ

(pi, axj)a((M∗)ε,ε)j,f +
∑
a∈Σ

(pi, a)a

=
∑

1≤j,k≤n

(Mε,xk)i,j((M
∗)xk,ε)j,f +

∑
1≤j≤n

(Mε,ε)i,j((M
∗)ε,ε)j,f + (Mε,ε)i,f

=
∑

1≤k≤n

(Mε,xk(M∗)xk,ε)i,f + (Mε,ε(M
∗)ε,ε)i,f

= ((M+)ε,ε)i,f = ((M∗)ε,ε)i,f .

Here in the second equality, we have replaced (Mε,ε)i,f by (Mε,ε)i,f ((M
∗)ε,ε)f,f ,

since ((M∗)ε,ε)f,f = ε; also note that (Mε,xt)i,f = 0. Since the algebraic
system (3) is strict, it has a unique solution. In particular, r = ‖A1‖.

Note that the automaton As used in Theorem 11 is induced by the
Greibach normal form (3) for the series r with (r, ε) = 0. We now consider
the second case.

If we are given a series r ∈ Salg〈〈Σ∗〉〉, where (r, ε) 6= 0, then we modify
the reset pushdown automaton A1 to obtain A′ = (n + 2,Γ, I ′,M ′, P ′). The
new state n+ 2 is an isolated state, i.e., no moves to n+ 2 or from n+ 2 are
possible. This means that, for all π1, π2 ∈ Γ∗,

M ′
π1,π2

=

(
Mπ1,π2 0

0 0

)
and

(M ′∗)π1,π2 =

(
(M∗)π1,π2 0

0 δπ1,π2

)
,

where δπ1,π2 is the Kronecker delta. Moreover let I ′ =
(
I1 ε

)
and P ′ =(

P
(r, ε)ε

)
. Hence, we obtain

‖A′‖ = I ′(M ′∗)ε,εP
′ = I1(M∗)ε,εP + (r, ε)ε = r .

This proves
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Corollary 12. Let r ∈ Salg〈〈Σ∗〉〉. Then there exists a simple reset pushdown
automaton with behavior r.

Theorem 11 in connection with Theorem 9 yields a new normal form for
algebraic power series.

Theorem 13. Let r ∈ Salg〈〈Σ∗〉〉 with (r, ε) = 0. Then for some n ≥ 2,
there exist matrices M0,M1,t,M2,t ∈ (S〈Σ〉)n×n, 1 ≤ t ≤ n− 1 such that r is
the (1, n)-component of the unique solution of the algebraic system

X = M0X +
∑

1≤t≤n−1

M1,tXM2,tX + E ,

where X is an n× n-matrix of variables.

Proof. Assume that r equals the first component of the unique solution
of the algebraic system (3) with n − 1 variables x1, . . . , xn−1. Let M ∈
((S〈Σ〉)n×n)Γ∗×Γ∗ , with Γ = {x1, . . . , xn−1}, be the simple pushdown matrix
induced by (3). Then by Theorem 11, ((M∗)ε,ε)1,n is the first component of
the solution of (3) and r = ((M∗)ε,ε)1,n.

By Theorem 9, (M∗)ε,ε is the solution of equation (2). Let now M0 = Mε,ε,
M1,t = Mε,xt and M2,t = Mxt,ε for 1 ≤ t ≤ n− 1.

Then equation (2) now reads

X = M0X +
∑

1≤t≤n−1

M1,tXM2,tX + E (4)

and r is the (1, n)-component of its unique solution.

In language theory, the restricted Dyck languages D′∗n (n ≥ 1) are formed
of the words over n pairs of associated parentheses which are “well-formed” in
the usual sense. Here a word is considered to be “well-formed” iff successive
deletions of subwords of associated parentheses, say (, ), [, ], . . . yield the
empty word. By Theorem II. 3.7. of Berstel [1], D′∗n (n ≥ 1) is generated by
the context-free grammar with productions

x→ ε, x→ akxākx, 1 ≤ k ≤ n .

Here ak and āk are the pairs of associated parentheses. By Theorem VII.
1.2. of Berstel [1], any of the languages D′∗n (n ≥ 2) is a cone generator of
the principal cone of context-free languages.

13



These results were transferred in Kuich, Salomaa [11] to algebraic power
series over commutative semirings S. The restricted Dyck series D′∗n (n ≥ 1)
are now the unique solutions of the strict algebraic systems

x =
∑

1≤k≤n

akxākx+ ε

and D′∗2 , and hence D′∗n for n ≥ 2, are cone generators of the principal
cone Salg〈〈Σ∗∞〉〉 of algebraic power series. (See Theorem 13.15 of Kuich,
Salomaa [11].)

In Example 14.3 of Kuich, Salomaa [11], it is described how a “master
system” generates a normal form for algebraic system. The “master system”
generating equation (4) reads now, for a given n ≥ 2,

x = ax+
∑

1≤k≤n−1

akxākx+ ε .

The important difference to the normal form given in this Example 14.3
is that now all M -matrices contain no ε-terms.

References

[1] J. Berstel (1979). Transductions and Context-Free Languages . B. G.
Teubner. doi:10.1007/978-3-663-09367-1.

[2] A. Blass, Y. Gurevich (2006). A note on nested words. Microsoft
Research. URL: https://www.microsoft.com/en-us/research/

publication/180-a-note-on-nested-words/.

[3] J. H. Conway (1971). Regular Algebra and Finite Machines . Chapman
& Hall.

[4] M. Droste, S. Dziadek, W. Kuich. Logic for ω-pushdown automata. To
be submitted.
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