
Logic for ω-Pushdown Automata

Manfred Drostea, Sven Dziadeka,1, Werner Kuichb,2

aInstitut für Informatik, Universität Leipzig, Germany
bInstitut für Diskrete Mathematik und Geometrie, Technische Unversität Wien, Austria

Abstract

Context-free languages of infinite words have recently found increasing in-
terest. Here, we will present a second-order logic with the same expressive
power as Büchi or Muller pushdown automata for infinite words. This ex-
tends fundamental logical characterizations of Büchi, Elgot, Trakhtenbrot
for regular languages of finite and infinite words and a more recent logical
characterization of Lautemann, Schwentick and Thérien for context-free lan-
guages of finite words to ω-context-free languages. For our argument, we
will investigate Greibach normal forms of ω-context-free grammars as well
as a new type of Büchi pushdown automata which can alter their stack by
at most one element and without ε-transitions. We show that they suffice
to accept all ω-context-free languages. This enables us to use similar results
recently developed for infinite nested words.
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1. Introduction

The Büchi-Elgot-Trakhtenbrot Theorem [6, 14, 25] provided a seminal
connection between automata and monadic second-order logic for finite words.
It was extended to various other structures, like infinite words [7], finite
trees [23], finite pictures [16], and finite and infinite nested words [2] and it
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also led to practical applications, e.g. in verification of finite-state programs
(model checking, cf. [21, 4, 8]). Lautemann, Schwentick and Thérien [18]
provided a Büchi-type description for context-free languages of finite words.
This was extended to algebraic formal power series in [20], to (even weighted)
higher-order pushdown automata in [26], and to weighted pushdown au-
tomata in [13].

Already Cohen and Gold [9] developed fundamental results for ω-context-
free languages of infinite words, including several equivalent descriptions in
terms of grammars, Büchi or Muller automata, and closures under Kleene-like
ω-rational operations. The main goal of this paper is to provide a Büchi-type
description for ω-context-free languages by a suitable logic, thereby extending
Lautemann, Schwentick and Thérien’s result to infinite words (and Büchi’s
result on ω-regular languages to ω-context-free languages). In our proof, we
will employ a new type of ω-pushdown automata. These simple ω-pushdown
automata do not allow ε-transitions and have only a very restricted access
to the stack: they can only push one symbol, pop one symbol or ignore
the stack. For finite words, such pushdown automata were utilized in [12].
Weighted simple reset pushdown automata for finite words were investigated
in [10]. We believe that this model of simple pushdown automata can be of
independent interest.

Recall that in formal language theory, grammars in Greibach normal
forms are of basic importance for context-free languages of finite words. Here,
we will first use a Kleene-type result of Cohen and Gold [9] to show that
each ω-context-free language has a Büchi-accepting grammar in quadratic
Greibach normal form. This enables us to show, as our first main new result,
that each ω-context-free language can be accepted by a simple ω-pushdown
automaton. A similar construction for context-free languages of finite words
occurred within an argument of Blass and Gurevich [5].

Then we show that the languages of simple pushdown automata are, in a
natural way, projections of visibly pushdown languages investigated by Alur
and Madhusudan [1]. Now we can use their expressive equivalence result
for visibly pushdown languages and monadic second-order logic to derive
our second main result, the logical description of ω-context-free languages.
Since our proof is constructive and the emptiness problem for ω-pushdown
automata is decidable (cf. [19]), we can also decide the emptiness of simple
ω-pushdown automata and therefore the satisfiability for our matching ω-
logic.

Our paper is structured so that we first deal with simple pushdown au-
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tomata and grammars in Greibach normal forms. Our language-theoretic
results for these can be read independently from the definition of and results
for our second-order logic which are developed afterwards.

2. ω-Pushdown Automata

Common definitions of ω-pushdown automata (cf. e.g., Cohen and Gold [9])
extend pushdown automata over finite words by a set of Muller- or Büchi-
accepting final states. We do not directly work with this automaton definition
because the equivalence proof for this automaton and the logic we will define
in Section 4 is not easily possible.

Instead, we propose another automaton model, the simple ω-pushdown
automaton. As in [12], we restrict the access to the stack to only allow either
to keep the stack unaltered, to push one symbol or to pop one symbol. This
will later allow us to employ a simple translation from nested word automata
to our automaton model. We believe that this automaton model is also of
independent interest.

For an alphabet Γ, let S(Γ) = ({↓} × Γ) ∪ {#} ∪ ({↑} × Γ) be the set of
stack commands.

Definition 1. A simple ω-pushdown automaton (ωSPDA) denotes a 6-tuple
M = (Q,Σ,Γ, T, q0, F ) where
• Q is a finite set of states,
• Σ is a finite input alphabet,
• Γ is a finite stack alphabet,
• T ⊆ Q× Σ×Q× S(Γ) is a set of transitions,
• q0 ∈ Q is the initial state,
• F ⊆ Q is a set of (Büchi-accepting) final states.

A configuration of an ωSPDA M = (Q,Σ,Γ, T, q0, F ) is a pair (q, γ),
where q ∈ Q and γ ∈ Γ∗. We define the transition relation between config-
urations as follows. Let γ ∈ Γ∗ and t ∈ T . If t = (q, σ, q′, (↓, A)), we let
(q, γ) `tM (q′, Aγ). If t = (q, σ, q′,#), we put (q, γ) `tM (q′, γ). Finally, if
t = (q, σ, q′, (↑, A)), we let (q, Aγ) `tM (q′, γ). These three types of transi-
tions are called push, internal and pop transitions, respectively. Note that
the stack here grows to the left.

We denote by state(q, σ, q′, s) = q the state and by label(q, σ, q′, s) =
σ the label of a transition. Both will be extended to infinite sequence of
transitions by letting state((ti)i≥0) = (state(ti))i≥0 ∈ Qω for the infinite
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sequence of states and label((ti)i≥0) = (label(ti))i≥0 ∈ Σω for the infinite
word constructed from the labels of the transitions.

We call an infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T a run of
M = (Q,Σ,Γ, T, q0, F ) on w = label(ρ) iff there exists an infinite sequence
of configurations (qi, γi)i≥0 with γ0 = ε such that (qi, γi) `tiM (qi+1, γi+1) for
each i ≥ 0.

For the sequence of states (qi)i≥0, let Inf((qi)i≥0) =
{
q | q = qi for infinitely

many i ≥ 0
}

. The run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅.

Definition 2. For an ωSPDA M = (Q,Σ,Γ, T, q0, F ), the language accepted
by M is denoted by L(M) = {w ∈ Σω | ∃ successful run of M on w}. A
language L ⊆ Σω is called ωSPDA-recognizable if there exists an ωSPDA M
with L(M) = L.

For clarity, we abbreviate a run ρ = (ti)i≥0 with (q0, γ0) `t0M (q1, γ1) `t1M · · ·
where label(ti) = ai by ρ : (q0, γ0)

a0−→ (q1, γ1)
a1−→ · · · such that the word be-

comes visible.

Example 1. We define an example automaton A = (Q,Σ, {S,B}, T, S, {S})
with Q = {S,M,B}, Σ = {a, b} and the transitions T as depicted in Fig. 1.
In state M , the automaton reads a and pushes B. For every B that is popped
from the stack, the automaton reads b. When there are no more B on the
stack, S is remaining on the stack and b brings the automaton to start from
the beginning. As S is the only final state, we have L(A) = {anbn | n ≥ 1}ω.

S M

B

b, (↑, S)

a, (↓, S)

b, (↑, B)

a, (↓, B)

b, (↑, B)

b, (↑, S)

Figure 1: Example 1: Automaton
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3. Expressiveness

In this section, we prove that the simple ω-pushdown automata defined
above recognize all ω-context-free languages. This means that the restrictions
in the automaton model do not change the expressiveness of ω-pushdown
automata. Even though this property seems to be very basic, we could not
find many results in the literature on this property. For the case of finite
words, Blass and Gurevich [5] show how to translate nested-word automata
into pushdown automata and only use the three stack commands defined
for ωSPDA. As we borrowed the restrictions of our automaton model from
nested-word automata, we use a similar strategy here to prove the expressive
equivalence also in the infinite case.

First, let us recall some background. The concept of ω-context-free lan-
guages has been defined in [9] (for an overview cf. [24]). They are defined to be
the languages generated by ω-context-free grammars with Muller-acceptance
condition (cf. [22]). It is shown that these languages coincide with the class
of languages recognized by general ω-pushdown automata, both for Büchi-
and Muller-acceptance condition.

Clearly, every ωSPDA-recognizable language is ω-context-free. The in-
verse will be shown subsequently.

The ω-context-free grammars are similar to context-free grammars for
finite words. We consider only infinite leftmost derivations and define both
Büchi- and Muller-acceptance conditions.

Definition 3 (Cohen and Gold [9]). An ω-context-free grammar is a tuple
G = (N,Σ, P, S, F ) where (N,Σ, P, S) is an ordinary context-free grammar
for finite words and F defines the acceptance condition: If G is Muller-
accepting, we have F ⊆ 2N . If G is Büchi-accepting, we have F ⊆ N .

Let δ : S → . . . be an infinite derivation of G. We write δ : S →ω
G w if

w ∈ Σω is the infinite word of terminals occurring in the production rules of
δ. For i ≥ 0, let δN(i) = Ai be the non-terminal which is the left-hand side
of the rule applied in step i of derivation δ. We define Inf(δ) =

{
A | A =

Ai for infinitely many i ≥ 0
}

.
For a Muller-accepting ω-context-free grammar G, the language generated

by G is defined as

L(G) = {w ∈ Σω | ∃ leftmost derivation δ : S →ω
G w with Inf(δ) ∈ F} .

For Büchi-accepting ω-context-free grammars,
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L(G) = {w ∈ Σω | ∃ leftmost derivation δ : S →ω
G w with Inf(δ) ∩ F 6= ∅} .

A language L ⊆ Σω is said to be an ω-context-free language if L = L(G)
for a Muller-accepting ω-context-free grammar G.

Clearly, every Büchi-accepting ω-context-free grammar can be translated
in a Muller-accepting one. The inverse is not so easily seen.

Lemma 4 ([15]). Every ω-context-free language is generated by a Büchi-
accepting ω-context-free grammar.

This has been shown in [15] by using automata over countable words,
i.e., also words with multiple ω-operators are allowed. But it can be shown
directly by using a standard idea used already to translate Muller-automata
to Büchi-automata (cf. Theorem 4.1.4 in Cohen and Gold [9]). In the sequel,
a stronger result will be needed and is provided by Lemma 6 below.

For finite words, the following definition is standard, cf. Autebert, Berstel
and Boasson [3] for an overview.

Definition 5. An ω-context-free grammar G = (N,Σ, P, S, F ) is in Greibach
normal form if P ⊆ N × ΣN∗. More specifically, G is in quadratic (or 2-)
Greibach normal form if

P ⊆ N × (Σ ∪ ΣN ∪ ΣNN) .

Lemma 6. Let L be an ω-context-free language. There exists a Büchi-
accepting ω-context-free grammar G in quadratic Greibach normal form with
L(G) = L.

The idea of the proof is similar to the idea given in Cohen and Gold [9],
Theorem 4.2.2, which shows that for Muller-accepting ω-context-free gram-
mars one can remove rules of the type A→ ε. They claim in Theorem 4.2.4
that the same idea can be used to prove that for every ω-context-free language
there exists a Muller-accepting ω-context-free grammar in Greibach normal
form. We show it here for Büchi-acceptance and for the stricter quadratic
Greibach normal form.

Proof. By Theorem 4.1.8 of Cohen and Gold [9], L can be expressed as
the Kleene-closure of context-free languages over finite words, i.e., for some
l ∈ N, there exist context-free grammars Gi, G

′
i (1 ≤ i ≤ l) such that

L =
⋃l
i=1 L(Gi)L(G′i)

ω. For 1 ≤ i ≤ l, let Gi = (Ni,Σ, Pi, Si) and G′i =
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(N ′i ,Σ, P
′
i , S

′
i) and we assume all Ni and N ′i to be pairwise distinct. As the

Gi and G′i are context-free grammars for finite words, we can assume they
are in quadratic Greibach normal form.

We construct the Büchi-accepting ω-context-free grammar G = (N,Σ, P,
S, F ) where N = {S} ∪

⋃l
i=1(Ni ∪ N ′i ∪ {S̄i}) and F = {S̄i | 1 ≤ i ≤ l} as

follows; here the symbols S and S̄i are new symbols and are assumed to be
neither in Ni nor in N ′i . We define as an intermediate step

Ptmp = {S→SiS̄i, S̄i→S ′iS̄i | 1 ≤ i ≤ l} ∪
l⋃

i=1

(
Pi ∪ P ′i

)
.

The grammar G with Ptmp as set of production rules accepts the language L
but is not yet in Greibach normal form. To achieve this, we first substitute
Si and S ′i with all possible right-hand sides of their productions to obtain G
in Greibach normal form:

P = {S→αS̄i, S̄i→α′S̄i | Si→α ∈ Pi, S ′i→α′ ∈ P ′i , 1 ≤ i ≤ l}∪
l⋃

i=1

(
Pi∪P ′i

)
Unfortunately, α and α′ can already contain two non-terminals and there-
fore, G can contain up to three non-terminals on the right-hand sides of its
productions. Thus, G is not yet in quadratic Greibach normal form.

The Büchi-acceptance condition and the definition of F ensure that for
every word accepted by G, one of the G′i is applied infinitely many times.
Hence

L(G) =
l⋃

i=1

L(Gi)L(G′i)
ω = L .

Now, we apply a standard algorithm (see e.g. Harrison [17], Theo-
rem 4.7.1) to convert P into quadratic Greibach normal form Ḡ = (N̄ ,Σ, P̄ ,
S̄, F ) with N̄ = N ∪N ×N and
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P̄ =
l⋃

i=1

(Pi ∪ P ′i )

∪ {S̄→αS̄i | Si→α ∈ Pi, |α| ≤ 2, 1 ≤ i ≤ l}
∪ {S̄→aB(C, S̄i) | Si→aBC ∈ Pi, 1 ≤ i ≤ l}
∪ {S̄i→αS̄i | S ′i→α ∈ P ′i , |α| ≤ 2, 1 ≤ i ≤ l}
∪ {S̄i→aB(C, S̄i) | S ′i→aBC ∈ P ′i , 1 ≤ i ≤ l}
∪ {(A, S̄i)→αS̄i | A→α ∈ Pi ∪ P ′i , |α| ≤ 2, 1 ≤ i ≤ l}
∪ {(A, S̄i)→aB(C, S̄i) | A→aBC ∈ Pi ∪ P ′i , 1 ≤ i ≤ l} .

The new non-terminals are pairs (A,B) with production rules that apply a
production rule of non-terminal A and add the non-terminal B to its right-
hand side.

Technically, because the Gi and G′i are grammars for finite words, they
could derive the empty word ε. In this special case, whenever |α| = 0, we
substitute in the above construction αS̄i by all right-hand sides of productions
for S̄i and we simply omit rules S̄i→αS̄i.

This shortens the production rules to at most two non-terminals on the
right-hand side. As only an occurrence of the non-terminal S̄i in Ḡ implies
an occurrence of S̄i in a derivation of G, the set of Büchi states F is not
changed. It follows that

L(Ḡ) = L(G) = L

and Ḡ is in quadratic Greibach normal form.

Note that the above construction for P̄ needs one case less than the origi-
nal construction in Harrison [17], Theorem 4.7.1. In the original construction,
there is a special case, in which for (A,B) there is already a production rule
for A with three non-terminals on the right hand side. In P̄ , such production
rules only occur for S̄ and for S̄i. But neither S̄ nor any of the S̄i occur in
the first position of any pair (A,B).

Example 2. Let Σ = {a, b, c}, L1 = c+ and L′1 = {w ∈ {a, b}+ | |w|a =
|w|b}. The corresponding grammars are G1 = ({S1},Σ, P1, S1) where P1 =
{S1→c | cS1} and G′1 = (N ′1,Σ, P

′
1, S

′
1) where N ′1 = {S ′1,M,N,A,B} and P ′1

contains the rules
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S ′1→aB | bA | aS ′1B | bS ′1A | aBS ′1 | bAS ′1 | aS ′1M | bS ′1N
M→bS ′1
N→aS ′1
A→a

B→b .

The corresponding grammar for L = L1L
′ω
1 is Ḡ = (N̄ ,Σ, P̄ , S̄, F ) with F =

{S̄1} and P̄ contains the rules of P1, of P ′1, and additionally

S̄→cS̄1 | cS1S̄1

S̄1→ aBS̄1 | bAS̄1 | aS ′1(B, S̄1) | bS ′1(A, S̄1) | aB(S ′1, S̄1) | bA(S ′1, S̄1) |
aS ′1(M, S̄1) | bS ′1(N, S̄1)

(B, S̄1)→bS̄1

(A, S̄1)→aS̄1

(S ′1, S̄1)→ aBS̄1 | bAS̄1 | aS ′1(B, S̄1) | bS ′1(A, S̄1) | aB(S ′1, S̄1) | bA(S ′1, S̄1) |
aS ′1(M, S̄1) | bS ′1(N, S̄1)

(M, S̄1)→bS ′1S̄1

(N, S̄1)→aS ′1S̄1 .

We call intermediate steps in a derivation δ : S → α1 → α2 → . . . sen-
tential forms. Thus, the i-th sentential form of δ is αi. Similarly, the i-th
configuration of a run ρ : γ0 ` γ1 ` . . . is defined to be γi.

The following will be the first main result of this paper.

Theorem 7. Every ω-context-free language is ωSPDA-recognizable.

Proof. Let L be an ω-context-free language. By Lemma 6, L is generated
by some Büchi-accepting ω-context-free grammar G = (N,Σ, P, S, F ) in
quadratic Greibach normal form. We construct an ωSPDA M = (Q,Σ,Γ, T,
q0, F ) with Q = Γ = N , q0 = S, and

T ={(A, a,B, (↓, C)) | A→aBC ∈ P} ∪ (1)

{(A, a,B,#) | A→aB ∈ P} ∪ (2)

{(A, a,B, (↑, B)) | A→a ∈ P,B ∈ N} (3)

for a ∈ Σ and A,B,C ∈ N .
Intuitively, the non-terminals in the grammar are simulated by states in

the automaton. The second non-terminal on the right side of the productions
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is pushed to the stack to store it for later. Whenever a final production is
processed (Eq. (3)), it is checked which non-terminal is waiting on the stack
to be processed. The Büchi-accepting final states of M are the same as in
G. As the grammar only allows derivations where non-terminals in F occur
infinitely often, the automaton will only allow runs where the same is true
for states in F .

Claim: There exists a derivation δ : S → · · · → a1 . . . aiA1 . . . Aj → . . . of

G if and only if there exists a run ρ : (S, ε)
a1−→ . . .

ai−→ (A1, A2 . . . Aj) → . . .
of M , with i ≥ 0.

We prove the claim by an inductive construction of steps i in the deriva-
tion δ and in the run ρ:

Let i = 0. Then the derivation δ : S is still in start state. As q0 = S, the
start of the corresponding run is ρ : (q0, ε). The same argument holds for the
other direction.

Let i > 0. We distinguish three cases:
1. Let the i-th rule be A→ai. To get the sentential form a1 . . . aiA1 . . . Aj in

the i-th step, the i−1-th sentential form has to be a1 . . . ai−1AA1 . . . Aj.
Then, by induction hypothesis, there exists the i− 1-th configuration
(A,A1 . . . Aj) in the run ρ.
By construction, there exists a transition (A, ai, A1, (↑, A1)) ∈ T . It fol-
lows that a possible i-th configuration is (A1, A2 . . . Aj) and the word read
until then is a1 . . . ai. The direction from run to derivation works similarly.

2. Let the i-th rule be A→aiA1. To get the i-th sentential form as assumed
in the claim, the i−1-th sentential form has to be a1 . . . ai−1AA2 . . . Aj.
Then, by induction hypothesis, there exists the i− 1-th configuration
(A,A2 . . . Aj) in the run ρ.
By construction, there exists a transition (A, ai, A1,#) ∈ T . It follows
that a possible i-th configuration is (A1, A2 . . . Aj) and the word read
until then is a1 . . . ai. The other direction works similarly.

3. Let the i-th rule beA→aiA1A2. To get the i-th sentential form as assumed
in the claim, the i−1-th sentential form has to be a1 . . . ai−1AA3 . . . Aj.
Then, by induction hypothesis, there exists the i− 1-th configuration
(A,A3 . . . Aj) in the run ρ.
By construction, there exists a transition (A, ai, A1, (↓, A2)) ∈ T . It fol-
lows that a possible i-th configuration is (A1, A2 . . . Aj) and the word read
until then is a1 . . . ai. The other direction works similarly.

This proves the claim.
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Let w = a1a2 . . . ∈ Σω. Now,

w ∈ L(M) iff ∃ run ρ of M on w and Inf(state(ρ)) ∩ F 6= ∅
iff ∃ run ρ : (S, ε)

a1−→ . . .
ai−→ (A1, A2 . . . Aj)→ . . . of M

and Inf(state(ρ)) ∩ F 6= ∅
iff ∃ derivation δ : S → · · · → a1 . . . aiA1 . . . Aj → . . .

of G and Inf(δ) ∩ F 6= ∅
iff ∃ successful derivation δ of G on w

iff w ∈ L(G) .

The equivalence of the second and third line is due to the claim above.

Example 3. Let G = (N,Σ, P, S, F ) be a Büchi-accepting ω-context-free
grammar with N = {S,M,B}, Σ = {a, b}, F = {S} and P contains the
following rules:

S→aMS

M→b | aMB

B→b

Then G is in quadratic Greibach normal form. Note that the non-terminal M
derives a string anbn+1 for n ∈ N and the non-terminal S prepends another
a. Thus, L(G) = {anbn | n ≥ 1}ω. By the construction of the proof of
Theorem 7, G can be transformed into the ωSPDA of Example 1. Note that
Eq. 3 generates a rule for every non-terminal in the grammar. As there are
no transitions that push M on the stack, we omit its pop-rule here.

Now we summarize our results obtained so far.

Corollary 8. Let L ⊆ Σω. The following are equivalent:
(i) L is ωSPDA-recognizable,

(ii) L is accepted by some ω-pushdown automaton,
(iii) L is contained in the ω-Kleene closure of context-free languages,
(iv) L is generated by some Muller-accepting ω-context-free grammar,
(v) L is generated by some Büchi-accepting ω-context-free grammar in

2-Greibach normal form.

Proof. The notions of ω-Kleene closure and general ω-pushdown automata
were given in Cohen and Gold [9]; ω-Kleene closure was also used in the proof
of Lemma 6.
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The proof is performed by the following steps:
(i)⇒ (ii): trivial by definition,
(ii)⇔ (iii)⇔ (iv): shown by Cohen and Gold [9], Theorem 4.1.8,
(iii)⇒ (v): follows from Lemma 6,
(v)⇒ (i): follows from Theorem 7.

4. Logic for ω-Pushdown Automata

The goal of this section is to find a Büchi-type logical formalism that
is expressively equivalent to ωSPDA. This extends the work of Lautemann,
Schwentick and Thérien [18] who defined a logic for context-free languages
over finite words. They use first-order logic together with one second-order
variable that has to define a matching. They also show that monadic second-
order logic (MSO) with the one matching variable is equivalent as well. Their
proof uses context-free grammars in a symmetric version of the Greibach
normal form. Here we use a direct translation from automata and therefore,
we will use the monadic second-order approach.

This section is guided by the procedure of Droste and Perevoshchikov [12].
Their main result is a logical characterization of timed pushdown languages
for finite words.

Let w ∈ Σω be an ω-word. The set of all positions of w is N. A binary
relation M ⊆ N× N is a matching (cf. [18]) if
• M is compatible with <, i.e., (i, j) ∈M implies i < j,
• each element i belongs to at most one pair in M ,
• M is non-crossing, i.e., (i, j) ∈ M and (k, l) ∈ M with i < k < j

implies i < l < j.
Let Match(N) denote the set of all matchings in N× N.

Let V1, V2 denote countable and pairwise disjoint sets of first-order and
second-order variables. We fix a matching variable µ /∈ V1 ∪ V2. Let V =
V1 ∪ V2 ∪ {µ}.

We will define the logic in two steps. In the first layer of the logic,
ωMSO(Σ), the matching variable µ is unbounded. The second layer, ωML(Σ),
existentially bounds this variable. We will show in Section 6 that ωML(Σ) is
expressively equivalent to ωSPDA. As an intermediate step in the correspond-
ing proof, we will use the fact from Section 5 that ωMSO(Σ) is expressively
equivalent to visibly pushdown ω-automata.

Definition 9. Let Σ be an alphabet. The set ωMSO(Σ) of matching ω-MSO

12



(w, σ) |= Pa(x) iff aσ(x) = a

(w, σ) |= x ≤ y iff σ(x) ≤ σ(y)

(w, σ) |= x ∈ X iff σ(x) ∈ σ(X)

(w, σ) |= µ(x, y) iff (σ(x), σ(y)) ∈ σ(µ)

(w, σ) |= ¬ϕ iff (w, σ) 6|= ϕ

(w, σ) |= ϕ ∨ ψ iff (w, σ) |= ϕ or (w, σ) |= ψ

(w, σ) |= ∃x. ϕ iff ∃j ∈ N. (w, σ[x/j]) |= ϕ

(w, σ) |= ∃X.ϕ iff ∃J ⊆ N. (w, σ[X/J ]) |= ϕ

Table 1: The semantics of ωMSO(Σ) formulas

formulas is defined by the extended Backus-Naur form (EBNF)

ϕ ::= Pa(x) | x ≤ y | x ∈ X | µ(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X.ϕ

where a ∈ Σ, x, y ∈ V1 and X ∈ V2.

Positions in the word will later be assigned to variables in ϕ. Here,
Pa(x) is a unary predicate indicating that the x-th letter of the word is a.
Furthermore, µ(x, y) says that x and y will be matched.

A (w,V)-assignment is a mapping σ : V → N ∪ 2N ∪Match(N) such that
σ(V1) ⊆ N, σ(V2) ⊆ 2N and σ(µ) ∈ Match(N).

Let σ be a (w,V)-assignment. For x ∈ V1 and j ∈ N, the update σ[x/j] is
the (w,V)-assignment σ′ with σ′(x) = j and σ′(y) = σ(y) for all y ∈ V \ {x}.
The update σ[X/J ] for X ∈ V2 and J ⊆ N and the update σ[µ/M ] for
M ∈ Match(N) are defined similarly.

Let ϕ ∈ ωMSO(Σ). Furthermore, let w = a0a1 . . . ∈ Σω and σ be a
(w,V)-assignment. We define (w, σ) |= ϕ inductively over the structure of
ϕ as shown in Table 1, where a ∈ Σ, x, y ∈ V1 and X ∈ V2. The logical
counterparts ∧, →, ∀x. φ and ∀X.φ can be gained in the usual way from
negation and the existing operators.

We now define MATCHING(µ) ∈ ωMSO(Σ) which ensures that µ is

13



matching. Let

MATCHING(µ) = ∀x∀y. (µ(x, y)→ x < y)∧
∀x∀y∀k.

(
(µ(x, y)∧k 6= x∧k 6= y)→ ¬µ(x, k)∧¬µ(k, x)∧¬µ(y, k)∧¬µ(k, y)

)
∧

∀x∀y∀k∀l.
(
(µ(x, y) ∧ µ(k, l) ∧ x < k < y)→ x < l < y

)
,

where x 6= y, x < y and i < j < k have the usual translation.

Definition 10. We let ωML(Σ), the set of formulas of matching ω-logic
over Σ, be the set of all formulas ψ of the form

ψ = ∃µ. (ϕ ∧MATCHING(µ)) ,

for short ψ = ∃matchµ. ϕ, where ϕ ∈ ωMSO(Σ).

Let w ∈ Σω and σ be a (w,V)-assignment. Then, (w, σ) |= ψ if there
exists a matching M ⊆ N2 such that (w, σ[µ/M ]) |= ϕ.

Let ψ ∈ ωML(Σ). We denote by Free(ψ) ⊆ V the set of free variables of
ψ. A formula ψ with Free(ψ) = ∅ is called a sentence. For a sentence ψ, the
validity of (w, σ) |= ψ does not depend on σ. Therefore, σ will be omitted
and we only write w |= ψ. We denote by L(ψ) = {w ∈ Σω | w |= ψ} the
language defined by ψ. A language L ⊆ Σω is ωML-definable if there exists
a sentence ψ ∈ ωML(Σ) such that L(ψ) = L.

The following will be the second main result.

Theorem 11. Let Σ be an alphabet and L ⊆ Σω an ω-language. Then L is
ωML-definable if and only if L is ωSPDA-recognizable.

After some preparations, this theorem will be proved in Section 6.

5. Visibly Pushdown ω-Languages

It turns out that the ωMSO(Σ) formulas correspond exactly to the MSO-
logic defined for visibly pushdown ω-languages [1]. In fact, without consid-
ering the existential quantification over the matching relation ∃matchµ, the
matching must explicitly be encoded in the words; the result is a nested
word. For the convenience of the reader, we recall nested words and visibly
pushdown languages [1, 2] in this section.

A nested alphabet is a triple Σ̃ = (Σ↓,Σ#,Σ↑) with Σ↓, Σ# and Σ↑ being
pairwise disjoint sets of push, internal and pop letters, respectively. Let
Σ̂ = Σ↓ ∪ Σ# ∪ Σ↑.

14



Definition 12. A visibly pushdown ω-automaton (ωVPA) is a 6-tuple M =
(Q, Σ̃,Γ, T, q0, F ) where
• Q is a finite set of states,
• Σ̃ is a finite nested alphabet,
• Γ is a finite stack alphabet,
• T = T ↓ ∪ T# ∪ T ↑ is a set of transitions, with

– T ↓ ⊆ Q× Σ↓ ×Q× ({↓} × Γ),
– T# ⊆ Q× Σ# ×Q× {#},
– T ↑ ⊆ Q× Σ↑ ×Q× ({↑} × Γ),

• q0 is the initial state and
• F is a set of (Büchi accepting) final states.

The following definitions are mostly similar to the ones for ωSPDAs. The
only difference is that the definition for T above restricts push transitions to
push letters, pop transitions to pop letters and internal transitions to internal
letters.

A configuration of an ωVPA M = (Q, Σ̃,Γ, T, q0, F ) is a pair (q, γ), where
q ∈ Q and γ ∈ Γ∗. We define the transition relation as follows. Let γ ∈
Γ∗. For t = (q, σ, q′, (↓, A)) ∈ T ↓, we write (q, γ) `tM (q′, Aγ). For t =
(q, σ, q′,#) ∈ T#, we write (q, γ) `tM (q′, γ). Finally, for t = (q, σ, q′, (↑
, A)) ∈ T ↑, we write (q, Aγ) `tM (q′, γ).

We denote by state(q, σ, q′, s) = q the state and by label(q, σ, q′, s) = σ the
label of a transition. Both are extended to infinite sequence of transitions by
letting state((ti)i≥0) = (state(ti))i≥0 ∈ Qω for the infinite sequence of states

and label((ti)i≥0) = (label(ti))i≥0 ∈ Σ̂ω for the infinite word constructed from
the labels of the transitions.

We call an infinite sequence of transitions ρ = (ti)i≥0 with ti ∈ T a run of

M on w = label(ρ) ∈ Σ̂ω iff there exists an infinite sequence of configurations
(qi, γi)i≥0 with γ0 = ε such that (qi, γi) `tiM (qi+1, γi+1) for each i ≥ 0.

A run ρ is called successful if Inf(state(ρ)) ∩ F 6= ∅.

Definition 13. For an ωVPA M = (Q, Σ̃,Γ, T, q0, F ), the language accepted
by M is denoted by L(M) = {w ∈ Σ̂ω | ∃ successful run of M on w}. A
language L ⊆ Σ̂ω is ωVPA-recognizable with respect to Σ̃ if there exists an
ωVPA M = (Q, Σ̃,Γ, T, q0, F ) with L(M) = L.

Note that the ωVPA-recognizable languages with respect to Σ̃ form a
proper subclass of the ωSPDA-recognizable languages over Σ̂.
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Also note that the definition here differs from the definition in [1] by the
way how we handle the empty stack. Alur, Madhusudan allow their automata
to check if the stack is empty by reading the special symbol ⊥. The ωVPA
does not allow this check directly. But the ωVPA can duplicate all its states
and stack symbols to allow us to distinguish between states with empty stack
and those with non-empty stack. Whenever pushing a symbol onto the empty
stack, this new stack symbol has to contain the extra information that upon
popping that symbol, the automaton has to change to an empty-stack state
afterwards.

Let f : Σ̂ → Σ̂′ be a mapping. It respects nesting if f(Σ↓) ⊆ Σ′↓,
f(Σ#) ⊆ Σ′# and f(Σ↑) ⊆ Σ′↑. The mapping will be extended to words in
the natural way.

Theorem 14 (Alur and Madhusudan [1]). Let L1 ⊆ Σ̂ω and L2 ⊆ Σ̂ω be
ωVPA-recognizable with respect to Σ̃. Then L1 ∪ L2, L1 ∩ L2, Σ̂ω \ L1 are
ωVPA-recognizable with respect to Σ̃. If f : Σ̂→ Σ̂′ is a mapping that respects
nesting, then f(L1) is ωVPA-recognizable with respect to Σ̃′.

We now discuss how the logic ωMSO has the same expressive power as
ωVPAs. Note that all ωMSO(Σ) formulas contain at least the free variable
µ. We therefore have to extend the definitions as follows. Let

LV(ψ) = {(w, σ) | w ∈ Σω, σ is a (w,V)-assignment, (w, σ) |= ψ} .

In the following, we are only interested in L{µ}(ψ). The matching relation
µ can be encoded into Σ to gain a nested alphabet called the tagged alphabet
tag(Σ) = ({a↓ | a ∈ Σ}, {a# | a ∈ Σ}, {a↑ | a ∈ Σ}) where the tagged
letters a↓, a# and a↑ are not occurring in Σ. For that, consider a word
w = a0a1 · · · and a (w, {µ})-assignment σ. The encoding for (w, σ) is the
tagged word w̃ = ã0ã1 · · · where ãi = a↓i if there exists a position y with
µ(i, y), and ãi = a↑i if there exists a position x with µ(x, i), and ãi = a#

i

otherwise. This encoding will be extended to sets of (w, {µ})-assignments
like L{µ}(ϕ) in the natural way. The underlying alphabet will be called

Σ̂tag = {σ↓ | σ ∈ Σ} ∪ {σ# | σ ∈ Σ} ∪ {σ↑ | σ ∈ Σ}.

Theorem 15 (Alur and Madhusudan [1]). Let L ⊆ Σ̂ω
tag. Then, L is ωVPA-

recognizable with respect to tag(Σ) iff there is an ωMSO(Σ)-formula ϕ with
Free(ϕ) = {µ} and L{µ}(ϕ) = L.
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The mapping π : Σ̂tag → Σ removes the “tag” of a tagged letter. Thus,
π maps a↓, a# and a↑ to a. This can be extended to words by letting
π(a0a1 · · · ) = π(a0)π(a1) · · · and to languages L ⊆ Σ̂ω

tag by setting π(L) =
{π(w) | w ∈ L}.

Lemma 16. Let L ⊆ Σ̂ω
tag be ωVPA-recognizable with respect to tag(Σ). Then

π(L) ⊆ Σω is ωSPDA-recognizable.

This has been proved in [5] for finite nested words. Here, we present their
proof adopted similarly to infinite words.

Proof. Let A = (Q, tag(Σ),Γ, T, q0, F ) be an ωVPA with L(A) = L. We
construct an ωSPDA B = (Q,Σ,Γ, T ′, q0, F ) such that L(B) = π(L). Let

T ′ = {(q, π(a), p, s) | (q, a, p, s) ∈ T} .

Now,

L(B) = {w ∈ Σω | ∃ successful run of B on w}
= {w ∈ Σω | ∃ successful run ρ of B on w = w0w1 · · · and

ρ : (q0, γ0)
w0−→ (q1, γ1)

w1−→ · · · }
= {w ∈ Σω | ∃ run ρ of B on w with Inf(state(ρ)) ∩ F 6= ∅ and

ρ : (q0, γ0)
w0−→ (q1, γ1)

w1−→ · · · and

w = w0w1 · · · = π(v0)π(v1) · · · = π(v)}
= {w ∈ Σω | w = π(v) and ∃ run ρ′ of A on v = v0v1 · · · with

Inf(state(ρ′)) ∩ F 6= ∅ and ρ′ : (q0, γ0)
v0−→ (q1, γ1)

v1−→ · · · }
= {π(v) | v ∈ Σ̂ω

tag and ∃ successful run ρ′ of A on v = v0v1 · · · with

ρ′ : (q0, γ0)
v0−→ (q1, γ1)

v1−→ · · · }
= π{v ∈ Σ̂ω

tag | ∃ successful run of A on v}
= π(L(A)) = π(L) .

6. Equivalence of Logic and Automata

This section proves the expressive equivalence of the full logic and ω-
pushdown automata.

Let a = (a1, . . . , an) ∈ A1 × . . . × An be a tuple. Then we define for
1 ≤ i ≤ n the i-th projection of a by pri(a) = ai.
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Lemma 17. Let Σ be an alphabet and L ⊆ Σω be ωSPDA-recognizable. Then
L is ωML-definable.

Proof. By assumption, there exists an ωSPDA A = (Q,Σ,Γ, T, q0, F ) with
L(A) = L. Let T = {t1, . . . , tm} be an enumeration of the transitions. We
define an ωML-sentence ψ such that L(ψ) = L as follows. Hereby, we proceed
similarly to the lines of [11].

First, we will need an auxiliary formula

next(x, y) = x < y ∧ ¬(∃z. x < z ∧ z < y) .

We define the set of second-order variables V = {Xt | t ∈ T}. The
following three ωMSO(Σ) formulas ψpart, ψcomp and ψfinal will be used. We
let

ψpart = ∀x.
∨
t∈T

(
x ∈ Xt ∧

∧
t′∈T : t6=t′

x /∈ Xt′
)

.

Then ψpart ensures that the variables Xt form a partitioning of the positions
x. Now let

ψcomp = ∀x.
(
ϕfirst(x) ∧

∧
t∈T

(
x ∈ Xt → (ϕ1(x, t) ∧ ϕ2(x, t) ∧ ϕ3(x, t))

))
,

and let

ϕfirst(x) = ∀y. (x ≤ y)→
∨

t∈T : pr1(t)=q0

x ∈ Xt ,

ϕ1(x, (q, a, q′, s)) = Pa(x) ,

ϕ2(x, (q, a, q′, s)) = ∀y.
(
next(x, y)→

∨
t′∈T : pr1(t′)=q′

y ∈ Xt′
)

,

ϕ3(x, (q, a, q′, (↑, A))) = ∃y.
( ∨
t∈T : pr4(t)=(↓,A)

y ∈ Xt ∧ µ(y, x)
)

.

Then ψcomp ensures that there exists a run of the automaton. Note how
the formula ϕ3 applies the matching variable µ to simulate the stack of the
automaton.

Finally, ψfinal controls the acceptance condition that final states have to
occur infinitely often in a successful run:

ψfinal = ∀x∃y.
(
x < y ∧

∨
t∈T : pr1(t)∈F

y ∈ Xt

)
.
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Now, let ψ ∈ ωML(Σ) be the sentence defined as

ψ = ∃matchµ. ψpart ∧ ψcomp ∧ ψfinal .

Then,

L(ψ) = {w ∈ Σω | ∃ matching M s.t. (w, ∅[µ/M ]) |= ψpart ∧ ψcomp ∧ ψfinal}
= {w ∈ Σω | ∃ successful run of A on w}
= L(A) = L .

The other direction uses the corresponding results for visibly pushdown
languages.

Lemma 18. Let Σ be an alphabet and L ⊆ Σω be ωML-definable. Then L is
ωSPDA-recognizable.

Proof. Let ψ = ∃matchµ.ϕ ∈ ωML(Σ) be a formula with L(ψ) = L.
We know ϕ ∈ ωMSO(Σ) with Free(ϕ) = {µ}. Let L′ = L{µ}(ϕ). By

Theorem 15, L′ ⊆ Σ̂ω is ωVPA-recognizable with respect to Σ̃ = ({σ↓ | σ ∈
Σ}, {σ# | σ ∈ Σ}, {σ↑ | σ ∈ Σ}).

The remaining existential quantification over the matching relation µ
is exactly the projection π from ωVPA-recognizable languages to ωSPDA-
recognizable languages. By Lemma 16, L = π(L′) is ωSPDA-recognizable.

Proof of Theorem 11. This theorem is immediate by Lemmas 17 and 18.

Concluding, we can summarize:

Corollary 19. Let L ⊆ Σω. The following are equivalent:
(i) L is sPDA-recognizable,

(ii) L is an ω-context-free language,
(iii) L is ωML-definable.
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[15] Z. Ésik, S. Iván (2011). Büchi context-free languages. Theoretical Com-
puter Science, vol. 412(8), pp. 805–821. doi:10.1016/j.tcs.2010.11.026.

[16] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas (1996). Monadic
second-order logic over rectangular pictures and recognizability by tiling
systems. Information and Computation, vol. 125(1), pp. 32–45. doi:
10.1006/inco.1996.0018.

[17] M. A. Harrison (1978). Introduction to Formal Language Theory.
Addison-Wesley. ISBN 0201029553.

[18] C. Lautemann, T. Schwentick, D. Thérien (1994). Logics for context-free
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