
J. Parallel Distrib. Comput. 74 (2014) 2708–2721
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Partitionable group membership for Mobile Ad hoc Networks
L. Lim ∗, D. Conan
Institut Mines-Télécom, Télécom SudParis, CNRS UMR SAMOVAR, Évry, France

h i g h l i g h t s

• Distributed system model adapted to the dynamic characteristics of MANETs;
• Eventual α partition-participant detector for MANETs;
• Eventual register per partition for MANETs;
• Abortable consensus for MANETs;
• Abortable-consensus-based partitionable group membership.

a r t i c l e i n f o

Article history:
Received 21 June 2013
Received in revised form
24 January 2014
Accepted 9 March 2014
Available online 17 March 2014

Keywords:
Partitionable group membership
Dynamic partitionable systems
MANETs
Abortable consensus

a b s t r a c t

Group membership is a fundamental building block that facilitates the development of fault-tolerant
systems. The specification of group membership in partitionable systems has not yet reached the same
level of maturity as in primary partition systems. Existing specifications do not satisfy the following two
antagonistic requirements: (i) the specification must be weak enough to be solvable (implementable);
(ii) it must be strong enough to simplify the design of fault-tolerant distributed applications in
partitionable systems. In this article, we propose: (1) a new distributed system model that takes into
account the formation of dynamic paths, (2) a specification of partitionable group membership for
MANETS called PGM, and (3) an implementation of PGM designed by adapting a well-known solution
of primary partition group membership, namely Paxos. This results in the specification of an abortable
consensus as the combination of two abstractions: an eventual α partition-participant detector and
an eventual register per partition that guarantee liveness and safety per partition, respectively. Then,
partitionable group membership is solved by transformation into a sequence of abortable consensus.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Mobile Ad hoc NETworks (MANETs) are self-organising net-
works that lack a fixed infrastructure. The task of building dis-
tributed systems upon MANETs raises numerous challenges due
to operational constraints: variability of wireless communica-
tion bandwidth and throughput due to unreliable physical layer,
dynamicity of nodes arrivals and departures, heterogeneity of
hand-held devices in terms of battery power and bandwidth capa-
bility, mobility behaviour of nomad users, etc. As a consequence,
topology changes occur both rapidly and unexpectedly and nodes
(processes) can dynamically enter and leave the system. In other
words, a distributed systembuilt overMANETs is partitionable. Ac-
cording to the CAP (Consistency, Availability and Partition-tolerance)

∗ Corresponding author.
E-mail addresses: leon.lim@telecom-sudparis.eu (L. Lim),

denis.conan@telecom-sudparis.eu (D. Conan).

http://dx.doi.org/10.1016/j.jpdc.2014.03.003
0743-7315/© 2014 Elsevier Inc. All rights reserved.
theorem, it is impossible for a synchronous distributed system
service to provide C, A and P at the same time [17,24]: consistency
implies that each response to a request is atomic; availability re-
quires that each node receiving a request must respond; partition-
tolerance reflects the tolerance of message losses. If the system is
partially synchronous then two of the three desirable properties
can be achieved. Since network partitioning is an intrinsic charac-
teristic ofMANETs, Pmust be providedwhile ensuring some trade-
off between C and A. In other words, network partitioning may
result in a degradation of the services, but not necessarily in their
unavailability: partitioned groups must continue to operate as au-
tonomousdistributed systems. Basically, there is a need to consider
a mechanism (or middleware service) that manages partitioned
groups explicitly in order to mitigate the effects of network par-
titions on C and A. Therefore, we tackle in this article the problem
of partitionable group membership for MANETs.

Group membership is a middleware service that maintains
views of the membership of the group at each process. A view
is a list of processes (the members) with an identifier for unique

http://dx.doi.org/10.1016/j.jpdc.2014.03.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.03.003&domain=pdf
mailto:leon.lim@telecom-sudparis.eu
mailto:denis.conan@telecom-sudparis.eu
http://dx.doi.org/10.1016/j.jpdc.2014.03.003

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2709
identification. In the literature, two types of group membership
services have emerged: primary partition and partitionable ser-
vices [21]. Primary partition group membership maintains a sin-
gle agreed view of the core cluster of processes—i.e., the so-called
primary partition. [28] shows that primary partition membership
can be solved by a sequence of consensus, where each consensus
is executed by the processes in the current view and the decision
returned by the consensus is a set of processes; these processes
are the members of the next view. Partitionable group membership
maintains all partitions uniformly. By allowing concurrent views,
partitionable group membership does not require strong agree-
ment as [the one] in primary partition group membership [19],
but its specification faces two antagonistic requirements: (i) the
specification must be weak enough to be implementable; (ii) it
must be strong enough to simplify the design of fault-tolerant dis-
tributed applications in partitionable systems. Collaborative appli-
cations [12], resource allocation management [6], and distributed
monitoring [36] are examples of applications that support perma-
nent partitioning and thus are able to run on multiple partitions.

Several partitionable group membership specifications have
been proposed and surveyed in [5,8,21,38]. Two of the prominent
specifications are in [8,21]. They sketch the two categories of par-
titionable group membership specifications that differ about their
liveness property: (i) liveness must hold only in completely stable
partitions [21], and (ii) liveness must be ensured in every parti-
tion [8]. However, one of the two requirements cited above is not
satisfied in these specifications: the specification in [21] requires a
strong stability condition that can be satisfied by a trivial but use-
less implementation; the specification in [8] requires a weak sta-
bility condition that cannot be implemented without assuming a
model that is somewhat in contradiction with dynamic systems.
As a consequence, we focus in this article on the specification of
partitionable groupmembership that is implementable and strong
enough.

Since consensus can be used to solve primary partition group
membership,we argue that another type of consensusmay be used
to solve partitionable group membership. One of the well-known
consensus protocols in primary partition systems is the Synod al-
gorithm of Paxos [30,31]. Since Paxos is adaptable and makes use
of a sequence of consensus natively, we propose a solution to the
partitionable group membership problem by adapting Paxos.

The contribution presented in this article is threefold. Firstly,
we define a distributed system model for MANETs with a weak
stability condition based upon the application-dependent param-
eter named α, which is a threshold value used to capture the live-
ness property of a partition: α stable processes are required to
execute distributed computations in a partition. We also define
a heartbeat-counter-based stability criterion, which is a parame-
ter that is used by processes to determine the most stable nodes
amongmutually reachable ones. Secondly,we adapt the Paxos pro-
tocol by following the methods proposed in [14,15]. This results
in a specification of a form of consensus, called abortable consen-
sus (AC). AC is a combination of two abstractions: an eventual α
partition-participant detector (♦PPD) and an eventual register
per partition (♦RPP). For short, ♦PPD is specified to abstract
liveness in a partition whereas ♦RPP encapsulates safety in the
same partition. Then, the partitionable group membership prob-
lem is solved by a transformation into a sequence of AC. Thirdly,
we provide algorithms that implement all these abstractions, and
proofs of the algorithms (presented in Appendices A and B).

The rest of the article is organised as follows. We define a dy-
namic distributed system model for MANETs in three steps: we
present first elements in Section 2; we summarise in Section 3
the problems in existing specifications by focusing on the speci-
fications in [21,8]; and, we enrich our systemmodel with fairness,
reachability and timeliness properties in Section 4. Afterwards,
we specify abortable-consensus-based partitionable group mem-
bership in Section 5. Then, in Section 6, we implement the spec-
ification PGM, including AC and its two modules ♦PPD and
♦RPP . Finally, we discuss some related works and conclude the
article in Sections 7 and 8, respectively.

2. Distributed systemmodel

In this section, we define the first elements of our distributed
system model by characterising the dynamicity of MANETs and
presenting preliminary definitions.

2.1. Crash-recovery and infinite arrival models

We consider a dynamic distributed system composed of in-
finitely many mobile nodes. We assume that nodes are uniquely
identified, and consider one process per node. Thus, the system
consists of an infinite countable set of processes P = {. . . pi, pj,
pk . . .}. A process is correct in an execution if it does not fail in that
execution. We consider the crash-recovery model in which each
process has, in addition to its regular volatile memory, a stable
storage that allows the process to store part or all of its state via
the primitive store(). This allows the process to restart upon failure
with the same identifier by recovering its state via the primitive
recover(). We assume the execution integrity property stipulating
that the recovery of a process is necessarily preceded by its failure.

Nodes can dynamically enter the system or leave it by crashing,
recovering, disconnecting, or reconnecting. By definition [2,34],
the number of processes that have joined the system minus the
number of departures is called concurrency. We then consider
the infinite arrival model with bounded concurrency investigated in
[2,34]: in any bounded period of time, only finitely many nodes
take steps; the total number of nodes in a single execution may
grow to infinity as time passes; however, each execution has a
maximumconcurrency that is finite but unknown. In addition, pro-
cesses do not know P—i.e., the processes in P do not necessarily
know each other.

2.2. Asynchronous event-based composition model

We consider the asynchronous event-based composition model
[27] to specify interfaces and properties of distributed algorithms
and systems. In this model, each process is composed of a set of
softwaremodules called components. Each primitive or composite
component is identified by its name and is characterised by an
interface presenting different types of events that the component
can accept and produce. Distributed algorithms are typically made
of a collection of at least one component per process and these
components are supposed to satisfy some properties. We consider
E to be the set of possible events including at least the events
store(), crash() and recover(). Thereafter, E is enriched with other
events related to group membership and MANETs.

2.3. Execution, global history and causal order

The execution of a process is modelled by a sequence of events.
The local history of process p during an execution is a sequence of
events or absences of events hp = (e1pe

2
pe

3
p . . .), where an absence

is denoted by ϵ and eip corresponds to the ith event of process p.
The index p and the exponent i are omitted when the context is
clear. In addition, we consider the existence of a discrete global
clock that is not accessible to the processes. We take the range T
of the clock’s tick to be the set N of natural numbers. The global
history of an execution is a function H : P × T → E ∪ ϵ. If p
executes an event e ∈ E at instant t then H(p, t) = e; H(p, t) = ϵ
meaning that p does not execute any event at instant t . Let I ⊆ T
be an interval, wewrite e ∈ H(p, I) if p executes some event e in I—
i.e., ∃t ∈ I : H(p, t) = e. We also consider the ‘‘happened-before’’
relation between events as defined in [29].

2710 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
2.4. MANET links

Processes communicate by exchangingmessages chosen among
the set M of possible messages. We assume the MANET communi-
cation model in which nodes do not send point-to-point messages
but broadcast messages that are received by those nodes that are
in their transmission range. If a process q is within the transmis-
sion range of a process p, we say that there is a link between p and
q denoted p ❀ q. Links are unidirectional and the network is not
necessarily completely connected. Messages are uniquely identi-
fied, and there is no upper bound on message transmission delays.
We assume that q receives a message m from p at most once (no
duplication) and only if p previously broadcast m (no creation). We
define the event broadcastnbg(p,m) that corresponds to the broad-
cast of m by p to its neighbours. By way of exception, the specifi-
cations of [21,8] introduce the event send(p,m) that corresponds
to the sending of m by p. p receives a message m by executing the
event receive(p,m).

2.5. Groups and views

We adopt the terminology of [21]. A group is a set of processes
that are members of the group. A view is a pair v = (set, id) ∈ V,
where set is a set of processes identified by a unique identifier id
andV is the set of possible views. Membership reflects the process’
current perception of the group. The event by which a process p
considers a new view v is called view installation and is noted as
view_change(p, v, TS), where p is a process, v is a view, and TS is
a transitional set that corresponds to a subset of processes of the
intersection between members of the current view and members
of the new view. The execution of most of the events occurs in the
context of a view. The view inwhich an event is executed is defined
by the following function viewof : E→ V∪ ⊥. In this definition,
⊥∉ V means that the event is not executed in a view—e.g., during
the initialisation or upon a recovery.

Definition 1. viewof [21]. The view of an event e executed
by process p is the view delivered to p in the event e′′ =
view_change() that precedes e and such that no event e′ (which
corresponds to view_change() or crash()) at p between e′′ and e.
The view is⊥ if there does not exist such an event e′′.

3. Problems in existing specifications

In this section, we present basic safety and liveness properties
of existing specifications of partitionable group membership and
their problems.

3.1. Safety properties

The three following safety properties provide basic guarantees
about the installation of views. They are satisfied by [21,8] and
most of partitionable group membership specifications.

Property 1 (Self Inclusion). If process p installs view v, then p is a
member of v.

The self inclusion property requires that partitionable group
membership must inform a process about only views which it is
a member of. A view reflects process’ current perception of the
group—i.e., a set of processes with which it can communicate. A
process is always able to communicate with itself unless it fails.

Property 2 (Local Monotonicity). If process p installs view v after
installing view v′, then the identifier of v is strictly greater than that
of v′.
The local monotonicity property requires an increasing order of
view identifiers. Two consequences follow: (1) a process installs a
view at most once, and (2) if any two processes install the same
any two views, then they install these views in the same order. A
process that recovers installs the last view stored in its local stable
memory.

Property 3 (Initial View Event). Each application event send(),
receive() and broadcastnbg() is executed in a view.

The initial view event property states that the events send(),
receive(), or broadcastnbg() do not appear before the first event
view_change().

3.2. Liveness properties

Satisfying liveness raises the issue of detecting currently active
and connected processes [21]. Since we consider partitionable
systems, we introduce a mechanism for detecting the stability of
nodes in groups. Nodes may detect false positive stable nodes due
to the duration of these detections. Ideally, the partitionable group
membership servicemust provide precise information (views) that
correspond to situations of processes that are currently active and
that can communicate with each other. Such an ideal behaviour
cannot be guaranteed in all the executions, but can only be
achieved in some conditions. These conditions correspond to the
stability of the network that is external to the implementation of
the service. Therefore, the service may deliver different views to
members of a group during periods of time with unstable network
conditions. What matters is that the same view be delivered to
group’s members once group’s membership stabilises.

The specifications in [21,8] make use of the failure detector
abstraction by extending the eventually perfect failure detector
♦P [20] in order to define the liveness properties. This leads to
two stability conditions: (1) strong stability [21] where liveness
properties are guaranteed only in eventually completely stable
partitions in which all the links are eventually up, and (2) weak
stability [8] in which liveness properties are guaranteed in all the
partitions where communication links present some fairness.
Strong stability condition. In [21], processes are linked by paths
made of unidirectional logical links. Links may be up or down.
When a link is down, it cannot transport any message—i.e., each
transported message is lost. If a link is up and remains forever
after instant t then each message transported through this link
after t is eventually received by the destination node. An eventually
completely stable partition is then defined as a set S of processes
such that the processes in S are eventually active and connected to
each other through up links and the links from any process in S to
anyprocess outside S are down. In these strong stability conditions,
the failure detector that is denoted ♦P–like in [21] behaves
like ♦P . Thus, the stability of the partition containing mutually
connected nodes is required eventually forever. However, in
practice, this stability is required for a period of time that
lasts long enough so that the output of the failure detection
module stabilises. The liveness property of partitionable group
membership ensures that eventually each process installs a view
v that contains only members of the completely stable partition
(v.members = S). This view is called a ‘‘precise view’’.
Weak stability condition. In [8], a reachability property between
processes is defined in order to express the ability of processes to
communicate with each other: if process p sends a message m to
process q at instant t then q receivesm if and only if q is reachable
by p at instant t . The adapted version of ♦P , denoted ♦P̃ in [8],
is used to specify liveness in all the partitions, and not only in
eventually completely stable partitions. For each request by a
process p,♦P̃ returns a set of processes that are reachable by p. To

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2711
exclude useless solutions in which no messages are delivered, [8]
assumes that (i) a correct process always delivers its ownmessages
and (ii) if a correct process p delivers message m in view v′ that
includes some other process q and if q never delivers m, then p
eventually installs a new view v as the immediate successor to
v′ (liveness of message delivery). Therefore, the liveness property
of partitionable group membership can be satisfied in partitions
in which reachability relation is persistent. If this weak stability
condition captured by♦P̃ eventually holds, then the partitionable
group membership service outputs the value returned by♦P̃ .

3.3. Problems in the specifications

From a practical point of view, the sole usage of partitionable
group membership for building distributed applications is limited
[9]: View-aware applications require the cooperation of processes
in the same group. This cooperation is facilitated by a reliable
multicast service. A basic and well-known property of reliable
multicast is virtual synchrony, which can be used in conjunction
with either the agreement on successors property or the transitional
set property. The virtual synchrony1 property imposes that two
processes that install two consecutive views v′ and v deliver the
same set ofmessages in v′ [21,8]. The following paragraphs present
the problem of capricious views that is present in the specification
of [21] and the problem of the definition of fair links in the
specification of [8]. These problems thus show the necessity to
propose a new distributed system model and a new specification
of partitionable group membership.

Problem of capricious views. Each view installation must be jus-
tified and must reflect system changes as a result of events that
occurred in the system (such as real or suspected failure, or re-
quest to join or leave the group) [5]. In particular, installation of a
capricious view – i.e., installation of a new view at any instant and
without any reason – should not be allowed because it allows for
instance arbitrary deletions of correct andmutually connectedpro-
cesses. Now, we follow the argument of [38] to show that the spec-
ification of [21] does notmeet the requirement stipulating that the
specificationmust be strong enough to simplify the design of fault-
tolerant distributed applications in partitionable systems. In [38],
the authors provide two trivial but useless algorithms that satisfy
the specification of [21] (including self inclusion, local monotonic-
ity, initial view event and virtual synchrony). In these implementa-
tions, a singleton view containing just p – i.e., a capricious view – is
installed at p before every installation of a non-singleton view.
Clearly, these implementations do not help p to get any informa-
tion on other processes. Therefore, we consider that the specifi-
cation of partitionable group membership has to avoid capricious
view installation in order to be strong enough: the removal or in-
clusion of a process is allowed only if this process is suspected to
have leaved or joined the partition, respectively; and, if such an
event occurs then a new view is eventually installed to reflect this
event.
Problem in the definition of fair links. The problem of the specifica-
tion of [8] stems from the fact that two processes that are intermit-
tently mutually reachable become unreachable precisely at those
times when they attempt to communicate. To avoid this adverse
scenario, [8] enriches the systemmodel with the notion of fair link
that is defined as follows [8]: ‘‘Let p and q be two processes that are
not permanently unreachable from each other. If p sends an unbound
number of messages to q, then q will receive an unbound number of

1 It was first introduced in [13] in the context of primary partition systems
and latter extended to partitionable systems by some works in the literature
including [21,8].
these messages’’. However, as stated by [38], the specification in [8]
is based on a time-dependent property (Definition of reachability
relation) in a system model comprising a time-independent prop-
erty (Definition of fair link). In [8], the notion of reachability is not
time invariant: process q can be reachable by p at instant t , butmay
not be reachable by p at instant t ′ > t . Therefore, [8] assumes a
model that is somewhat in contradiction with dynamic systems. In
addition, we believe that communication links enriched with the
lossy property of fair links is not enough to capture the dynamic-
ity of MANETs: links are created dynamically andmay not last long
enough to tolerate infinite message losses that are allowed by fair
links. Thus, we argue that another kind of linksmust be considered
in order tomodelwireless, dynamic, and unstable links ofMANETs.

4. Enriched distributed systemmodel

In this section, we propose a model that captures the dynamic
creation of communication links, and define the stability property
and the stability condition of partitions in MANETs.

4.1. Fairness, reachability and timeliness

We distinguish three kinds of links: (1) eventually down, (2)
eventually up and (3) forever intermittently up. An eventually down
link eventually stops transporting messages. An eventually up link
eventually transports messages without losing any of them. A for-
ever intermittently up link can arbitrarily lose messages it trans-
ports. As stated in [8], forever intermittently links are the root of
the instability of the system. To avoid adverse scenario, we con-
sider the lossy property of links by defining a fair link of MANETs
as follows.

Definition 2 (Fair Link). The link p ❀ q is fair if, when p broadcasts
a message m to q an infinite number of times, q receives m from p
an infinite number of times.

Notice that eventually up links and forever intermittently up
links are both captured into fair links. Thus, we do not distinguish
them in the sequel. A sequence of processes (p1p2 . . . pn) in which
the links p1 ❀ p2, . . . , pn−1 ❀ pn are fair is called a fair path from
p1 to pn denoted by fair(p1p2 . . . pn).

By definition, a fair link can lose messages due to communica-
tion failures. Our reachability relation captures these communica-
tion failures and is defined as suggested in [38].

Definition 3 (Reachability). Given two processes p and q, q is
reachable from p if and only if there is a fair path from p to q. We
denote this relation of reachability of q from p as p ⇁ q.

If process q is reachable from process p, and vice-versa, we
write p � q and we say that p and q are mutually reachable.
Therefore, both the definitions of fair link and reachability are time
independent.

Since fair links may suffer from arbitrary delays and/or losses
such that there exists no ‘‘finite stable period’’ in which processes
can communicate ‘‘fast enough’’ in order to complete useful
computation, we define the concept of SADDM (Simple Average
Delayed/Dropped of a Message) links in which communication
delays between two processes in a fair link are bounded during
stable periods. This concept of SADDM links is inspired from the
notion of Average Delayed/Dropped channel [39]. A SADDM link
allows messages to be lost or arbitrarily delayed, but guarantees
that some subset of them are received in a timely manner and that
such messages are not too sparsely distributed in time. A SADDM
link is defined as follows.

2712 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
Fig. 1. Stable partitions and their stability condition during a period of time.
Definition 4 (SADDM Link). Let δ and β be two constants and let φ
be a finite time interval during which p broadcasts a messagem to
q at least β times. The link p ❀ q is a SADDM link if q receives at
least one of these messages in at most δ seconds.

A sequence of processes (p1 . . . pn) is a SADDM path in the
interval Φ if ∀i, j ∈ [1, n − 1] : i ≠ j =⇒ pi ≠ pj and the
link pi ❀ pi+1 is a SADDM link in Φ . A SADDM path from p1 to pn
is denoted by saddm(p1 . . . pn) with respect to finite interval time
that is omitted when it is unambiguous.

4.2. Stable partition, stability condition and stability criterion

A partition is stable during a period when all the processes in
that partition can communicate with each other using SADDM
paths during that period. So far, we have not defined such a period.
To do so, as in [35], let us define a time interval [tb, te] as being
a period. tb and te are defined by the application processes: tb is
the beginning time of the application whereas te is its ending time.
To simplify the presentation, we consider only one period in the
rest of the article. During a period, the stable property is a property
that remains true once it holds, that is to say it holds after the local
stabilisation time LSTp, which is unknown to the processes. A stable
partition associated to some process p is then denoted by♦PARTp.
It is defined as follows.

Definition 5 (Stable Partition). The stable partition of process p is
the set of processes such that there exists a time LSTp after which,
for each q ∈ ♦PARTp, saddm(p . . . q) and saddm(q . . . p) exist.

In addition, we say that a process q is stable in the context of p’s
stable partition if q ∈ ♦PARTp. This means that q is stable in p’s
partition at some unknown time t > LSTp.

Since there may be stable processes and unstable processes
that coexist in the same partition, progress is only desirable for
stable ones. Hence, we claim that useful computations should be
executed only by a set of at least α stable processes. The value
of α is specified as a requirement by the application. It is the
responsibility of the application to choose a suitable value of
α—i.e., the minimum number of participants to the application
computations. Therefore, the stability condition associated to a
process p is defined as follows.

Definition 6 (Stability Condition). |♦PARTp| > αp.

Stable processes in the same partition are always able to com-
municate with each other after LSTp through SADDM paths. Unfor-
tunately, processes cannot know LSTp. We claim that, since nodes
are heterogeneous, only a subset of mutually reachable nodes
should be selected by some stability criterion to form a partition
that may possibly satisfy the stability condition. A stability crite-
rion is a parameter that is used to determine which nodes are the
most stable ones.

We propose that nodes detect the current processes in their
partitions – i.e., the ones that are currentlymutually reachable – by
periodically broadcasting heartbeat messages to their neighbours.
Then, we specify a time-based stability criterion minhbp 6 hbqp 6
maxhbp, with minhbp > 1 and maxhbp > minhbp being two
constants, and with hbqp being a function that depends on the
number of heartbeat messages received by p from q—i.e., hbqp
increases if q is present in p’s partition and decreases otherwise.
q is marked as stable by p if hbqp > minhbp, and q is removed
from p’s set of stable processes if hbqp = 0—i.e., p does not
receive any heartbeat from q anymore. maxhbp is the maximal
value that a heartbeat counter can reach so that the heartbeat
counter does not increase indefinitely and the detection time of
a departure is not proportional to the duration of the presence
of the process in the partition. With this stability criterion while
tolerating sporadic disconnections, a node is eliminated from
participating if it disappears from the partition.

4.3. Illustrative example

Fig. 1 depicts an example of a distributed system configura-
tion during a time period with stable partitions and their stability
condition. Dashed circles represent the transmission range of pro-
cesses. Solid arrows correspond to SADDM links anddashed arrows
correspond to links that do not have the SADDM property. Black
discs represent unstable nodes whereas white discs depict stable
processes. Each stable partition is enclosed by a solid circle, and
two stable partitions do not intersect. In Fig. 1, there are eventu-
ally fives stable partitions♦PARTo,♦PARTp,♦PARTw,♦PARTa and
♦PARTx with their value of α equal to 1, 4, 2, 3 and 2, respectively.

Observe that stable partitions are not necessarily isolated from
the other nodes of the network: links from processes in a stable
partition to processes outside the partition are not necessarily
down. For instance, process u in ♦PARTw can receive messages
broadcast by processes in ♦PARTp in a timely manner through
some SADDM paths; but processes in ♦PARTp cannot receive
messages broadcast by u in a timely manner because there is no
SADDM path from any process in ♦PARTw to q. Therefore, u is
unstable in the context of ♦PARTp and stable in the context of
♦PARTw .

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2713
5. Abortable consensus-based partitionable group member-
ship

We now present the architecture and the specification of the
abortable consensus-based partitionable group membership.

5.1. Architecture

The architecture of partitionable group membership PGM
is based upon abortable consensus AC (cf. Fig. 2). AC is a
combination of two modules: the eventual α partition-participant
detector ♦PPD and the eventual register per partition ♦RPP .
♦PPD and ♦RPP correspond to the adapted versions of
the eventual leader ♦Leader and the eventual register ♦Register
of [14], respectively. The role of ♦PPD is to construct the set
αSet of stable processes and elect a leader among them. The role of
♦RPP is to propose and decide a value among processes in αSet .
♦RPP uses the retransmission module to deal with message
losses in SADDM paths. ♦RPP also uses ♦PPD to decide if a
proposed valuemust be abortedwhen participant nodes disappear
from the partition.

It is the responsibility of the application to propose a new view
if needed. Thus, the application layer decides to include or exclude
processes by proposing to install a new view by usingPGM.PGM
uses the retransmission module to send and receive new views
similarly to♦RPP . PGM notifies the application that its request
cannot be satisfied when the installation proposal of a view fails—
i.e., consensus is abandoned. The set of members of the potential
newviewmust be included inαSet . To thismeans,♦PPD notifies
the application when it detects a change in the composition of
αSet; for the sake of simplicity, this notification is supposed to be
done implicitly.

5.2. Specification of the partitionable group membership

In addition to the basic safety properties self inclusion, local
monotonicity and initial view event (cf. Section 3.1),PGM satisfies
the following safety and liveness properties.

Property 4 (PGM-Validity). If process p installs view v = (vset,
vid), then v′ = (vset, vid′) was proposed by a process q (possibly p)
in v.members and such that |v.members| > αp.

PGM-Validity stipulates that the act of installing a view must
reflect events that occurred in the environment.

Property 5 (PGM-Agreement on Final View). If there exists a set of
stable processes S ⊆ αSet ⊆ ♦PARTp that wish to install view vf
with vf .members = S, then all the processes in S eventually install
the same final view vf .

PGM-Agreement on final view ensures agreement on the
installed view among a set S of processes in a partition.PGM must
eventually provide the same view to all the processes in S when the
partition stabilises. The members of the final view is included into
or equal to the set αSet that is provided by♦PPD . The last view
is obtained if the partition stabilises and if eventually no processes
in S propose any view.

It is worth remarking that PGM-Agreement on final view
guarantees liveness of a partition even when the partition is
not completely stable. Recall that stable nodes in a partition are
not necessary isolated from the other nodes in the network—
i.e., stable and unstable nodes may coexist in a network partition.
The particularity of our approach concerns the detection of the sets
αSet composed of at least α stable processes. Since view members
must form a disjoint subset of nodes S ⊆ αSet with α 6 |S| 6
|αSet|, installation of a capricious view is avoided after the local
stabilisation time of the partition—i.e., when the stability condition
is satisfied.
Fig. 2. Architecture of partitionable group membership.

5.3. Specification of the abortable consensus

By analogy to the consensus protocol Synod of Paxos, each
process in the system is not supposed to propose a value: only
the processes that detect a set constituted of at least α stable
processes and that believe themselves to be the leader of this set
propose values. A process p proposes vset as the set of the potential
next view with the identifier vid by invoking the primitive AC-
propose(vset, vid). The invocation terminates by returning a value
(primitive AC-return). Returned values vset and vid may be
⊥, then meaning that the consensus was aborted. If vset ≠⊥
∧ vid ≠⊥, then a consensus is said to be reached. Abortable
consensus satisfies the three following properties.

Property 6 (AC-Termination). In a partition, let p be a process
that proposes a value. If there exists a set αSet composed of at least
α processes (including p), then p eventually decides. Otherwise, p
abandons.

Property 7 (AC-Agreement). In a partition, two processes in the set
αSet of stable processes do not eventually decide different values.

Property 8 (AC-Validity). In a partition, if a process p decides value
val = (vset, vid), then val′ = (vset, vid′)was proposed by a process
q (possibly p) in vset.

5.4. Specification of the eventual α partition-participant detector

An eventual α partition-participant detector is a distributed
oracle that detects the set αSet of stable processes in a partition.
The processes inαSet are chosen according to the stability criterion

2714 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
minhbp 6 hbqp 6 maxhbp. ♦PPD also eventually elects a unique
leader among αSet . αSet at p eventually stops changing but there
is no knowledge of when the unique leader is elected. Several
processes may think they are leaders. However, a unique leader
is eventually elected when the stability condition |♦PARTp| > αp
holds after some local stabilisation time. ♦PPD satisfies the
following properties.

Property 9 (Eventual αSet Stability). There is a time after which any
two processes of a stable set of processes αSet have the same αSet.

Property 10 (Eventual Leader Agreement). There is a time after
which all the processes in a stable set of processes αSet elect the same
process in αSet as the leader.

5.5. Specification of the retransmission module

The retransmission module deals with losses of messages that
are broadcast through SADDM paths. A process p executes the
primitive xbroadcast(m) or xreceive(m) to broadcast or receive
message m, respectively. We define the retransmission module
that satisfies the following property.

Property 11 (Reliable Broadcast to a Set of Stable Nodes). Let p be a
stable process and dest be a set of stable processes included in♦PARTp.
If p broadcast a message m βn times to dest, then the message m
originally broadcast by p is received by each process q ∈ dest in at
most βnη + nδ seconds, where η is the maximal period of time that
delimits two consecutive broadcasts and n is the length of the longest
SADDM path between p and r ∈ dest.

To satisfy the reliable broadcast property, all the messages that
need to be retransmitted must be not too sparsely distributed
in time. Recall that β and δ are constants that are used in the
definition of a SADDM link.

5.6. Specification of the eventual register per partition

As in [14],♦RPP materialises a stable shared memory. How-
ever, the eventual register per partition is not necessarily shared by
all the processes of the system (including amajority of correct pro-
cesses), but by the set of processes in partition composed of at least
α stable processes. In addition, the tentative of writing a value in
the register may fail in two cases: (1) in case of contention or (2) if
the stability condition is not satisfied. The first case corresponds to
concurrent propositions and is the same as in [14]: a proposer may
abandon a proposition if there exists another proposer in the same
partition that began to propose a value concurrently. In the sec-
ond case, the proposer does not only abandon its proposition, but
also the consensus instance, because there does not exist α stable
processes in the partition. In case of success during a stable period
of time, the execution model may execute as follows: when the
stability condition is satisfied, and if only one stable process keeps
proposing a value, then the value is eventually persistently written
in the register of the partition.

Process p attempts to write a value val = (vset, vid) per-
sistently in the register by invoking RPP -propose(p, vset, vid).
p decides on a value when it returns from the invocation of RPP -
return(p, vset, vid). The returned value may be (p,⊥,⊥), then
meaning that the consensus is aborted. Otherwise, the consensus
is reached.♦RPP satisfies the following properties.

Property 12 (RPP -Non Triviality of Abandon). In a partition, if
there exists a set αSet composed of at least α stable processes and
if p ∈ αSet proposes a value val = (vset, vid) an infinite number
of times, with vset ⊆ αSet ∧ |vset| > α, then p eventually decides
val′ = (vset, vid′). If there does not exist a set composed of at least α
stable processes, then p abandons.
Property 13 (RPP -Agreement per Partition). IdemAC-Agreement.

Property 14 (RPP -Validity per Partition). Idem AC-Validity per
partition.

6. Implementation

In this section, we complete our contribution by presenting an
implementation ofPGM. The proofs are provided in Appendices A
and B.

6.1. Eventual α partition-participant detector and retransmission
module

We already have presented an algorithm that implements
♦PPD in a previous work [33]. So, we do not detail the algo-
rithm here, but we only recap the idea. The algorithm is based on
the periodic exchange of heartbeat messages to identify the cur-
rent processes that are mutually reachable. Each process uses its
local stability criterion to determine α processes that are the most
stable ones—i.e., the ones that have exchanged the largest number
of heartbeats. Eventually, in a partition, all the processes in a sta-
ble set αSet composed of at least α stable processes have the same
αSet and elect the same process in αSet as the leader.

The retransmission module is used to deal with losses of mes-
sages sent through SADDMpaths. The implementation of thismod-
ule and its proof can be found in [32]. We present the idea of the
algorithm in this paragraph. Each message m that must be trans-
mitted is associatedwith a set of destination nodes that is included
in the current partition. The original sender p of m keeps broad-
casting m periodically as long as it does not receive an acknowl-
edgement from all the destination nodes, as done in [26,27] to
implement stubborn links. All the nodes of the partition partici-
pate by playing the role of ‘‘followers’’. Without any special treat-
ment, p may continue broadcasting m infinitely when destination
processes disappear from p’s partition. The retransmission mod-
ule invokes ♦PPD to address this issue and processes stop re-
broadcasting m if some destination process disappears from the
partition. Thus, the algorithm is ‘‘quiescent’’ [3,4].

6.2. Eventual register per partition

Algorithm 1 implements the eventual register per partition
♦RPP for process p. The goal of the algorithm is to ensure that if p
keeps proposing a value, then the value is eventually persistently
written in the register. Each proposed value is composed of a set
vsetp ⊆ 2P of processes and a unique identifier vidp ∈ V with vsetp
and vidp being themembers and the identifier of the potential new
view. To ensure uniqueness of view identifiers, p proposes values
with increasing identifiers that have not already been chosen by
another process in the partition. This is done by having p increment
its identifier vidp such that vidp > lastProposalp.id (Line 7)
with lastProposalp being the last proposal that p has proposed
or accepted. lastProposalp is stored in p’s local stable memory so
that p can retrieve the value when recovering from failure (Task
1). p broadcasts its proposal in a read message by using the
retransmission module in the procedure RPP -propose (Line 9).
This broadcast corresponds to the beginning of the two phases of
the procedure: a read phase (Lines 14–27) and then a write phase
(Lines 29–41). We describe these two phases in the rest of this
section.
Read phase. The goal of this phase is to prepare the set vsetp of
processes to accept p’s proposal (vsetp, vidp). It consists of Tasks 2
and 3. Task 2 handles the reception of ackread or nackread
messages of p’s read message whereas Task 3 treats the reception

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2715
of read messages originally broadcast by other processes. We
present the two tasks in the following paragraphs.
Task 2. While proposing a value, p checks that no process in vsetp
has encountered a proposal with the same set vsetp and with
a greater identifier. If a process in vsetp with such a proposal
exists, then p aborts because this means that there exists at least
some process q that proposes concurrently. In such a case, p
receives a nackread message containing vidp and vsetp from q
(Line 33). p also aborts when one or several processes in vsetp
are no longer considered to be stable by p (Line 16). When p
receives an ackread message with the identifier vidp from all the
processes in vsetp and if these processes are included in p’s set
of stable processes provided by ppd, p chooses the response with
the highest identifier (Line 20), and updates vidp and lastProposalp
(Line 21). Afterwards, p begins the write phase by broadcasting a
writemessage containing its proposal (vsetp and vidp).
Task 3. Process p checks whether the proposal just received is
eligible—i.e., the condition vidp < vidq∧vsetq ⊈ αSetp provided by
ppd (Line 25) does not hold. The eligibility of a proposal reflects the
fact that all the members in the proposed view are stable, and that
the identifier of the proposal is strictly greater than the identifier
of p’s last proposal. When q’s proposal is not eligible, p refuses q’s
proposal, and replies to q by broadcasting a nackread message
containing vidp (Line 26). Otherwise, p verifies that it is included in
vsetp, and then p broadcasts an ackread message containing vidq
and vidp to q (Line 27).
Write phase. The aim of this phase is to convince processes in vsetp
to write p’s value in the persistent register. Like in the read phase,
this attempt can fail in case of concurrent accesses. Thewrite phase
consists of Tasks 4 and 5. Task 4 handles the reception of ackwrite
and nackwrite messages, and the changes of αSet . Task 5 treats
write requests. We present the two tasks in the following.
Task 4. Process p abandons its current proposal upon the reception
of a nackwritemessage containing the identifier vidp. This means
that some process q has proposed a value with the same set vsetp,
but the associated identifier is greater than the identifier vidp: the
nackwrite message is broadcast by q at Line 41 when the test at
line 38 fails. Like in the read phase, p also abandons its current
proposal when one or several processes in vsetp are excluded from
the set αSetp of stable processes provided by ppd. Otherwise, when
p receives an ackwritemessagewith the identifier vidp fromall the
processes in vsetp, then p decides on its proposed value.
Task 5. Upon the reception of a write message from process q
with vsetq and vidq, p checks whether it can accept q’s value. This
is done by having p verify whether its last proposal contains the
same set vsetq with a smaller identifier. If so, p changes the value
of lastProposalp to (vsetq, vidq) (Line 34). Otherwise, p refuses q’s
proposal by broadcasting a nackwritemessage with vidp to q.

6.3. Abortable consensus

Algorithm 2 implements abortable consensusAC for process p.
The algorithm combines an instance of the module ♦RPP with
an instance of the module♦PPD . The variable decision is used to
store the decision value.

After proposing a value val = (set, id) by calling the procedure
AC-propose, p verifies (1) if the set αSet of processes provided by
ppd is still composed of at least α processes, (2) if p is the leader
of αSet , and (3) if p has not decided yet. If so, p keeps continuing
to propose its value. The value returned by abortable consensus
corresponds to the value returned by rpp (Line 8). Therefore, a
proposal is abandoned by rpp when there exists another proposer
that proposes concurrently, but the abortable consensus instance
is not abandoned as long as p detects via ppd more than α stable
processes, and believes itself to be the leader. Otherwise, the
proposer abandons the abortable consensus instance.
Algorithm 1 Implantation of eventual register per partition for
process p

1 Init():
2 lastProposalp ← (vset, vid); {p’s last proposal}
3 ppd← connect to ♦PPD;
4

5 Procedure RPP -propose(vsetp, vidp)
6 If lastProposalp.id > vidp then
7 vidp ← lastProposal.id+ 1;
8 lastProposalp ← (vsetp, vidp); store(lastProposalp);
9 xbroadcast(p,⟨read |vidp⟩,vsetp);
10

11 Task T1 : upon recovery
12 retrieve(lastProposalp);
13

14 Task T2: upon [∀q ∈ vsetp : xreceive(m) withm =
(q,⟨{ackread | vidp, vidq⟩,{p})
∨m = (q,⟨nackread | vidp⟩,{p})] ∨ [αSetp provided by ppd has
changed ∧ ∃r ∈ vsetp : r ∉ αSetp]

15 If (αSetp provided by ppd has changed ∧ ∃r ∈ vsetp : p ∉ αSetp) then
16 generate RPP -return(⊥,⊥);
17 If received at least one (q,⟨nackread | vidp⟩,{p}) then
18 generate RPP -return(⊥,⊥);
19 Else

20 select the response (q,⟨ackread | vidp, vidq⟩,{p}) with the highest
vidq;

21 vidp ← max(vidp, vidq)+ 1; lastProposalp ← (vsetp, vidp);
store(lastProposalp);

22 xbroadcast(p,⟨write | vidp⟩,vsetp);
23

24 Task T3: upon xreceive(m) withm = (q,⟨read | vidq⟩,vsetq)
25 If (vidp < vidq ∧ vsetq * αSetp provided by ppd) then
26 xbroadcast(p,⟨nackread |vidp),{q}⟩
27 Else If p ∈ vsetq then xbroadcast(p,⟨ackread | vidq, vidp⟩,{q});
28

29 Task T4: upon [∀q ∈ vsetp : xreceive(m) withm = (q,⟨{ackwrite | vidp⟩,{p})
∨m = (q,⟨nackwrite|vidp⟩,{p})] ∨ [αSetp provided by ppd has changed ∧
∃r ∈ vsetp : r ∉ αSetp]

30 If (αSetp provided by ppd has changed ∧ ∃r ∈ vsetp : p ∉ αSetp) then
31 generate RPP -return(⊥,⊥);
32 If received at least one (q,⟨nackwrite | vidp⟩,{p}) then
33 generate RPP -return(⊥,⊥);
34 Else generate RPP -return(vsetp, vidp);
35

36 Task T5: upon xreceive(m) withm = (q,⟨write | vidq⟩,vsetq)
37 If (p ∈ vsetq) then
38 If (vidq > vidp ∨ vidp =⊥) then

39 lastProposalp ← (vsetp, vidq);store(lastProposalp);
40 xbroadcast(p,⟨ackwrite | vidq⟩,{q});
41 Else xbroadcast(p,⟨nackwrite | vidq⟩,{q});

6.4. Partitionable group membership

Algorithm 3 implements partitionable group membership
PGM for process p. The goal of the algorithm is twofold: (1) to
check whether there exists a set αSet of stable processes in p’s
partition and (2) to install the same view at all the processes in
αSet . Variable ac represents an instance of abortable consensus.
The potential successor view is stored in variable decision. αp is the
same variable as the one used in the algorithm that implements
♦PPD [33]. All the variables are initialised in the phase Init.

Process p proposes a successor view vnew with vnew = (set, id)∧
|vsetnew| > αp ∧ id > v.id by executing an instance of abortable
consensus with vnew being its proposal for the consensus decision.

2716 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
The returned value of ac is not necessarily a value that was pro-
posed by some process—i.e., decision may equal (⊥,⊥) meaning
that p’s proposal for installing vnew has been aborted. Algorithm
3 notifies the application layer about this abandon by generating
a nack_view_change event (Line 11). If decision ≠ (⊥,⊥), then
decision corresponds to the successor view of p’s current view, and
p uses the retransmission module to broadcast this decision to the
members of this new view.

In Task 1, upon the reception of a decision message from q
containing the decided value decisionq, p accepts to install the new
view decisionq only if p is a member of this view and the identifier
of p’s current view is not greater than decisionq.id (Line 14). If these
conditions hold, then Algorithm 3 notifies the application layer
about the new view by generating a view_change event (Line 16).

Algorithm 2 Implementation of abortable consensus for process p

1 Init():
2 rpp← create♦RPP ;
3 ppd← create♦PPD;
4 decision← (⊥,⊥);
5

6 Procedure AC-propose(vset, vid)
7 While

(|ppd.participants().αSet| > α∧ ppd.participants().l = p∧ decision = (⊥,⊥))
do

8 decision← rpp.RPP -propose(vset, vid);
9 generate AC-return(decision);

Algorithm 3 Implementation of partitionable group membership
for process p

1 Init():
2 ac ← create AC; {Abortable consensus instance}
3 αp ← n > 1; {Same as αp in♦PPDp}
4 decision← (⊥,⊥); {Tuple (members, id)}
5

6 Procedure propose(vnew)

with vnew = (set, id) ∧ |set| > αp ∧ id > decision.id ∨ decision.id =⊥
7 decision← ac.propose(vnew .set, vnew .id); {Abortable consensus

decision}
8 If decision ≠ (⊥,⊥) then

9 xbroadcast(p,⟨decision | decision⟩, decision.members);
10 Else

11 generate nack_view_change(vnew);
12

13 Task 1: upon xreceive(m) withm = (q,⟨decision | decisionq⟩,∗)
14 If

(p ∈ decisionq.members ∧ (decision.id =⊥ ∨decisionq.id > decision.id)) then
15 decision← decisionq;
16 generate view_change(decision); {Notify application about current

view}

7. Related works

In this section, we discuss some works related to partition-
participant detectors in MANETs, to registers in dynamic systems,
and to partitionable group membership services dedicated to
MANETs.

7.1. Participant detectors in MANETs

[3] presents the heartbeat failure detectorHB for partitionable
networks.HB provides to each process an arraywith one entry for
each process of the system. The heartbeat sequence of a process
that is not in the partition is bound. The notion of the eventual α
partition-participant is inspired from this work. The authors also
consider that links are fair. However, fair links may suffer from
arbitrary delays and/or losses. We extend the concept of simple
dynamic paths [7] to SADDM paths. A SADDM path combines
the lossy property of a fair link and the timeless property of an
eventually timely link [1]. A SADDM link is weaker than a timely
link because it allows messages to be lost or arbitrarily delayed. It
is stronger than a fair link because it guarantees that some subset
of the broadcastmessages are received in a timelymanner and that
suchmessages are not too sparsely distributed in time. The system
in [3] is considered to be a fully-connected static one; the number
and the identity of processes are known in advance; and nodes do
not move or leave the system.

[18] introduced the concept of participant detector that is
used to solve the problem of bootstrapping in MANETs. The
authors consider that the identity and the number of processes
in the network are initially unknown. However, processes are
always connected through reliable bidirectional links and do not
crash. Participant detectors are defined for discussing about the
minimal information that processes must have about the other
participants in order to make the problem of consensus with
unknown participants solvable.

[37] proposes an eventual reachability failure detector♦R that
provides to each process a set of processes called quorum. The
authors define the concept of reachability graph R that is a directed
multi-graph. Nodes in R correspond to participants of the system,
and there exists a path from process p to process q if the output
value of p’s quorum contains q. According to the authors, ♦R can
be extended and adapted to partitionable systems. However, the
distributed system is not dynamic, the number and the identify
of the processes in the system are known by all the processes,
and all the links are considered to be reliable. In addition, no
implementation of♦R is provided.

[25] extends the query–response communication mechanism
of [35] by considering the mobility of nodes and proposes a failure
detector ♦SM that eventually detects the set of known and stable
processes: a process is known if it has joined the system and has
been identified by a stable process and a process is stable if it
never departs after having entered the system. Similarly to our
approach, the authors define a parameter α that corresponds to
the expected number of processes that can communicate with
each other despite of node movements, failures, etc. Then, they
propose to compute the value of α as the neighbourhood density
of the process minus the maximum number of faulty processes
in process’ neighbourhood, which is supposed to be known. In
our solution, α is specified as a requirement by the application. In
addition, the models in [25,35] target primary partition systems.

[22] proposes an eventually perfect unreliable partition detec-
tor for wireless networks, which is composed of a heartbeat failure
detector and a vector-based disconnection detector. The partition
detector is able to detect partitions provoked by disconnections
and failures. However, the total number of nodes of the system is
known and the proposed solution is neither based on the definition
of stable periods nor on the definition of dynamic paths.

7.2. Registers for dynamic systems

[10] implements a regular register in dynamic systems with in-
finite arrival with b-bounded concurrency [34,2]. The authors as-
sume that the churn rate is constant: at every unit of time, the
number of processes that leave the system equals the number of
processes that join the system. They propose an adapted version of
the regular register for dynamic systems and give two implemen-
tations: for synchronous systems and for eventually partially syn-
chronous systems. These implementations are however designed

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2717
for primary partition systems. [11] extends the model proposed
in [10] for building dynamic registers when the churn rate is not
constant.

7.3. Partitionable group membership for MANETs

[23] proposes a partitionable group membership algorithm for
MANETs in which nodes and communication links continuously
appear and disappear. Partitions correspond to cliques of the
undirected network graph. The graph is specified as a set of Node,
and installed views are subsets of Node. Each process eventually
installs a view that contains the members of its current clique.
A stability criterion called maximal criterion is used to build
non-extensible disjoint sets of nodes when the system stabilises.
The authors do not give any definition of stability, but note that
a system that remains relatively stable is needed (which does
not rule out unexpected failures or disconnections). In addition,
members of the group are limited to nodes at a 2-hops distance.

According to [16], partitionable groupmembership forMANETs
can be defined according to a functional property f to be realised. f
refers to some interest attributes supported by the nodes that form
the group—e.g., localisation, security domain, constraints related to
service quality and connectivity of the network. A node is included
in a group if it is eligible according to the attributes required by the
group. The proposed solution is similar to our solution in the sense
that the interest attributes can be used as stability criteria. The
stability criterion that we propose is based on heartbeat counters
per period in order to capture the connectivity via the reachability
relation and the stability of the network via the concept of SADDM
paths.

8. Conclusion

In this article, we have presented a distributed system model
adapted to the dynamic characteristics of MANETs, and then a
specification called PGM and an implementation of partitionable
groupmembership forMANETs. This specification satisfies the two
antagonistic requirements. Firstly,PGM is strong enough because
it avoids capricious views installation during stable periods, and
because the removal or inclusion of a process is allowed only if
this process is suspected to have leaved or joined the partition,
respectively. In addition, a newview is eventually installed in order
to reflect the event that occurred. Secondly, PGM is weak enough
to allow an implementation. We provide an example of such an
implementation and prove it. In short, we have defined a system
model that takes into account the formation of dynamic paths in
MANETs. Then, the partitionable group membership problem is
solved by transformation into a sequence of abortable consensus
AC. AC is specified as the combination of two abstractions:
an eventual α partition-participant detector ♦PPD and an
eventual register per partition♦RPP .♦PPD captures liveness
in a partition by detecting α stable processes whereas ♦RPP
encapsulates safety by materialising a distributed register in the
same partition.

Appendix A. Formal definitions, predicates, properties, and
assumptions

The predicates, properties, and definitions are inserted in the
order of their appearance in the article.

A.1. Preliminary definition and predicates for presenting properties
and definitions of partitionable group membership

In the following definition, the function pid : E → P returns
the identifier of the process associated to a given event.
Definition 1. viewof .

viewof (e)

def
=



v if ∃TS ∃t ∃t ′′ ∃e′′ @t ′ @e′ :
H(pid(e), t) = e
∧ H(pid(e), t ′′) = e′′ = view_change(pid(e), v, TS)
∧ t ′′ < t ′ < t
∧


H(pid(e), t ′) = e′ = crash(pid(e))
∨ ∃TS ′ ∃v′ : H(pid(e), t ′) = e′

∧ e′ = view_change(pid(e), v′, TS ′)


⊥ otherwise

alive(p)
def
= @t : H(p, t) = crash(p)

alive_after(p, t)
def
= @t : H(p, t) = crash(p)
∨ ∃t ′′ 6 t @t ′ > t ′′ : H(p, t ′′) = recover(p)
∧ H(p, t ′) = crash(p)

receive(p,m)
def
= ∃t : H(p, t) = receive(p,m)

send(p,m)
def
= ∃t : H(p, t) = send(p,m)

last_view(p, v)
def
= ∃t @t ′ > t ∃v ∃TS @v′ @TS ′ : H(p, t)
= view_change(p, v, TS)
∧ H(p, t ′) = view_change(p, v′, TS ′).

A.2. First set of properties and definitions of partitionable group
membership

Property 1 (Self Inclusion).

view_change(p, v, TS)⇒ p ∈ v.members.

Property 2 (Local Monotonicity).
H(p, t) = view_change(p, v, TS)

∧ H(p, t ′) = view_change(p, v′, TS ′) ∧ t > t ′


⇒ v.id > v′.id.

Property 3 (Initial View Event).
e = send(p,m) ∨ e = receive(p,m) ∨ e = boradcastnbg(p,m)


⇒ viewof (e) ≠⊥ .

Definition 2 (Fair Link). (for MANETs).
∀t ∃t1 > t : H(p, t1) = broadcastnbg(p,m) ∧ alive_after(q, t1)


∧


∀t ∃t2 > t : ∧ H(q, t2) = receive(q,m′)

∧ broadcastnbg(p,m′) ∈ H(p, [t,+∞[)

.

Definition 3 (Reachability).

reachable(p, q)
def
= fair(p . . . q).

Definition 4 (SADDM Link).

saddm(p, q)
def
= ∃I = [t1, t2] :

∀ti∈[1,β] ∈ I : H(p, ti) = broadcastnbg(p,m)

2718 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
∧ alive_after(q, t1)

∧ ∃t ′ 6 t1 + δ : H(q, t ′) = receive(q,m) ∧ δ > (t2 − t1)

.

Definition 5 (Stable Partition).

♦PARTp
def
=


q ∈ S ⊆ P |∃LSTp ∀t ′ > LSTp ∃t ′′ > t ′ :

saddm(p . . . q)[t ′,t ′′] ∧ saddm(q . . . p)[t ′,t ′′]

.

Definition 6 (Stability Condition).

|♦PARTp| ≥ αp.

A.3. Comparison, addition and subtraction operations on view
identifiers

In order to ensure uniqueness of the view identifiers, we
consider that each view identifier vid is taken from the set VID
that is a pair (p, c) with p being the process identifier and c ∈ N
the value of p’s local counter. We trivially define the comparison,
addition and subtraction operations on the view identifiers as
follows. Let vid′ = (p, i) and vid = (q, j) be two view identifiers in
VID and k be an integer in N:

vid′ = vid
def
=(p = q ∧ i = j)

vid′ > vid
def
=(p > q ∨ p = q ∧ i > j)

vid′ < vid
def
=(p < q ∨ p = q ∧ i < j)

vid′ > vid
def
=(p > q ∧ p = q ∧ i > j)

vid′ 6 vid
def
=(p < q ∧ p = q ∧ i 6 j)

vid+ k
def
= vid = (p, i+ k)

vid− k
def
= vid = (p, i− k).

A.4. Properties of PGM, AC, ♦PPD , the retransmission module,
and♦RPP

Property 4 (PGM-Validity).
∃t∃p : H(t, p) = view_change(p, v)


⇒


∃t ′ < t∃q ∈ v.members : H(q, t ′) = propose(q, v′)

∧|v.vset| > αp ∧ v.vid > v′.vid

.

Property 5 (PGM-Agreement on Final View).

∃S ⊆ αSet ⊆ ♦PARTp∃p∀q ∈ S∃t ′∀t > t ′∃vf :

H(p, t ′) = propose(p, vf)⇒ last_view(q, vf).

Property 6 (AC-Termination).

∃p∃vset∃vid∃t ′′ :
H(p, t ′′) = AC-propose(p, vset, vid)

∧


∀t ′ > t ′′ : (∃αSet ⊆ ♦PARTp : |αSet| > α)

⇒ ∃vset ′∃vid′∃t > t ′′ :
H(p, t) = AC-return(p, vset ′, vid′)
∧ vset ′ ≠⊥ ∧vid′ > vid


∨


∀t ′ > t ′′ : (̸ ∃αSet ∈ ♦PARTp : |αSet| > α)⇒ ∃t > t ′′ :

H(p, t) = AC-return(p,⊥,⊥)


.

In property AC-Termination, observe that the identifier of the
returned value is vid′ with vid′ > vid. The reason is the following.
Proposer pmayhave to proposemore than once before the consen-
sus is reached. In order to ensure uniqueness of view identifiers and
ignore old proposals, p issues a sequence of proposalswith increas-
ing identifiers. As a consequence, the identifier vid′ that is eventu-
ally returned by AC is greater than or equal to vid. This reasoning
also applies to the following properties.

Property 7 (AC-Agreement).

∃vset∃vset ′∃vid∃vid′∀p, q ∈ αSet ⊆ ♦PARTp
∃t ′∀t > t ′∃t1 > t∃t2 > t :

H(p, t1) = AC-return(p, vset ′, vid′) ∧ H(q, t2)

= AC-return(p, vset, vid)


⇒ (vset = vset ∧ vid = vid′).

Property 8 (AC-Validity).

∃vset∃vid∃p∃t :
H(p, t) = RPP -return(p, vset, vid)

⇒


∃q ∈ vset∃t ′ < t : H(q, t ′)

= RPP -propose(q, vset, vid′) ∧ vid′ 6 vid

.

Property 9 (Eventual αSet Stability).

∀p, q ∈ αSet ⊆ ♦PARTp∃t ′∀t > t ′∃t1 > t∃t2 > t :
H(p, t1) = PPD-return(p, l, αSet) ∧ H(q, t2)

= PPD-return(q, l′, αSet ′)


⇒ αSet = αSet ′.

Property 10 (Eventual Leader Agreement).

∀p, q ∈ αSet ⊆ ♦PARTp∀t > t ′∃t1 > t∃t2 > t :
H(p, t1) = PPD-return(p, l, αSet) ∧ H(q, t2)

= PPD-return(q, l′, αSet ′)


⇒ l = l′.

Property 11. Reliable broadcast to a set of stable nodes.

∃I = [t1, t2]∃dest∀q ∈ dest∃r ∈ dest∃m∃n :
m = (p, ⟨type | p, . . .⟩, dest)

∧ n = |saddm(p . . . r)| > |saddm(p . . . q)|
∧ ∀ti∈[1,βn] ∈ I∃η = (max(ti+1 − ti) : ∀i ∈ [1, βn

]) :

H(p, ti) = broadcastnbg(m)


⇒


∀q ∈ dest∃t 6 t1 + βnη + nδ : H(q, t) = receive(q,m)


.

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2719
Property 12. RPP -Non triviality of abandon.

∃p∃vset∃t ′ :
H(p, t ′) = AC-propose(p, vset, vid)
∧


∀t ′′ > t ′∃t1 > t ′′ :
vset ⊆ αSet ⊆ ♦PARTp∃vid :
|vset| > α ∧RPP -propose(p, vset, vid)
∈ H(p, [t ′′,∞])


⇒ ∃t2 > t1 : H(p, t2) = AC-return(p, vset, vid′)
∧vset ≠⊥ ∧ vid′ > vid


∨


∀t ′′ > t ′ : (̸ ∃αSet ∈ ♦PARTp : |αSet| > α)⇒ ∃t > t ′ :

H(p, t) = AC-return(p,⊥,⊥)


.

Property 13 (RPP -Agreement per Partition). IdemAC-Agreement.

Property 14. RPP -Validity per partition. Idem AC-Validity per
partition.

Appendix B. Proofs of correctness

In this section, we show that Algorithms 1, 2 and 3 implement
♦RPP , AC, and PGM, respectively.

B.1. ♦RPP—Algorithm 1

Lemma 1. If process p decides value val = (vset, vid), then val =
(vset, vid′) was proposed by some process q (possibly p) in vset.

Proof. Let p be a process that decides value val = (vset, vid) at
instant t . Consider by contradiction that there does not exist some
process q in vset which proposed val′ = (vset, vid′) at instant ts <
t . p deciding valmeans that the event RPP -return(p, vset, vid) is
executed (Line 34)—i.e., p has received an ackwritemessage from
all the processes in vsetp and this ackwritemessage is an acknowl-
edgement of its broadcast write message that contains vsetp and
vidp. The write message is only broadcast at the end of a read
phase that in turn was launched by having p call the procedure
RPP -propose(p, vsetp, vid′). This is true because communication
links do neither duplicate nor create messages. �

Lemma 2. If p is the only process among the set of stable processes
αSet ⊆ ♦PARTp that keeps proposing value val = (vsetp, vidp)
with vsetp ⊆ αSet ∧ |vsetp| > α, then p eventually decides val′ =
(vsetp, vid′p).

Proof. Let p be a process among the set of stable processes αSet ⊆
♦PARTp that keeps proposing an infinite of times its value val =
(vsetp, vidp) with vsetp ⊆ αSet ∧ |vsetp| > α. Since p is eventually
the only process that keeps proposing its value, theremust exist an
instant t1 after which no process q ≠ p in αSet proposes a value.

Consider by contradiction that there does not exist an instant
t2 > t1 at which p decides val′ = (vsetp, vid′p). After t1, p proposes
its value infinitely often. Since p proposes values with increasing
identifiers (Line 7), there must exist an instant t3 > t1 after which
vidp becomes greater than all the identifiers encountered by any
process q ∈ vsetp ∧ q ≠ p. The retransmission module used by
p guarantees that there exists an instant t4 > t3 at which p even-
tually succeeds in broadcasting its message (p, ⟨read |vidp⟩, vsetp)
to all the processes in αSetp with vsetp ⊆ αSetp (Property 11). The
only scenario that prevents p from broadcasting its read message
occurs when p has received a message (r, ⟨nackread | vidr⟩, {p})
(Line 29) from some process r ∈ vsetp such that vidr > vidp. This
contradicts the fact that p has the highest identifier after t3. There-
fore, processes in vsetp eventually receive the read message of p
containing vidp and reply to p with an ackread message that is
tagged with vidp. Then, p eventually succeeds in terminating the
read phase tagged with vidp when p receives an ackread message
tagged vidp from all the processes in vsetp. After t4, p starts the
write phase by broadcasting awritemessage containing vsetp and
vid′p > vidp (Lines 21–22). Since, all the processes in vsetp are sta-
ble, they eventually receive a message (p, j⟨write | vid′p⟩, vsetp)
and reply to pwith an ackwritemessage that contains vid′p. After-
wards, p terminates the write phase of its proposal upon the re-
ception of these ackwrite messages. p eventually decides val′ =
(vsetp, vid′p) after t4 > t3 > t1. This contradicts the fact that there
does not exist an instant t2 > t1 at which p decides val′. �

For the following lemma,weuse the Lemma6of [33] stipulating
that for stable process p such that ∀q ∈ ♦PARTp : αp > αq ∨ (αp =

αq∧p > q), there exists a time after which αSetq = αSetp remains
true.

Lemma 3. Let p and q be any two processes in vset ⊆ αSet ⊆
♦PARTp with |vset| > α. There exists an instant after which p and
q do not decide differently.

Proof. Let p and q be any two processes in αSet ⊆ ♦PARTp with
|αSet| > α. From Lemma 6 of [33], there exists an instant t after
which for each process q in αSetp, αSet l = αSetp = αSetq with l
being the leader of αSet . Let val = (vsetl, vidl) be the value that
was decided by l after t . To show that p and q do not eventually
decide different values, we show that each process q ∈ vsetl ⊆
αSet l eventually decides the same value as l’s decision value.

Since l is the eventual leader, there must exist an instant t1
after which l is the only process that keeps proposing values. From
Lemma 2, l eventually decides the value val′ = (vsetl, vid′l)—
i.e., read and write phases associated to l’s proposal that contains
vsetl and vidl with vidl 6 vid′l were terminated with success.
l decides the value val′ and broadcasts the write message
containing the decision value to all the processes in vsetl by using
the retransmission module (Line 22). Processes in vsetl eventually
receive l’s write message containing value val = (vsetl, vid′l)
(Property 11). This value is accepted by all the processes in vsetl
(Line 39). �

Theorem 1. Algorithm 1 implements ♦RPP by satisfying RPP -
Validity per partition,RPP -Agreement per partition andRPP -Non
triviality of abandon properties.

Proof. Consider a stable process p. From Lemma 1, if p decides
value val = (vset, vid), then val′ = (vset, vid′) was proposed
by some process q (possibly p) in vset . This satisfies the RPP -
Validity per partition property. From Lemma 2, if p is the only
stable process that keeps proposing, then p eventually decides its
proposed value. This satisfies the RPP -Non triviality of abandon
property. From Lemma 3, if p decides value val = (vset, vid), then
for each process q ∈ vset ⊆ ♦PARTp, q eventually decides val. This
satisfies the RPP -Agreement property. �

B.2. AC—Algorithm 2

Lemma 4. If process p decides value val = (vset, vid), then val′ =
(vset, vid′) was proposed by some process q (possible p) in vset.

Proof. Consider that process p decides value val = (vset, vid) at
instant t . From Line 8, val was decided by the module ♦RPP .
From property RPP -Validity per partition, val′ = (vset, vid′)
was proposed by some process q (possible p) in vset at instant
t ′ < t . �

2720 L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721
Lemma 5. Let p and q be any two processes inαSet ⊆ ♦PARTp. There
exists an instant after which p and q decide the same value.

Proof. Let p and q be any two processes in αSet ⊆ ♦PARTp.
From Line 8, val was decided by rpp, and from property RPP -
Agreement per partition, there exists an instant after which p and
q decide the same value. �

Lemma 6. If process p proposes a value and if there exists a set αSet
constituted of at least α stable processes that elect p as being the
leader of αSet, then p eventually decides. Otherwise, p abandons.

Proof. Let p be a process that proposes a value. If there does not
exist a set αSet constituted of at least α stable processes that
include p, then p abandons (Lines 9). Consider that there exists
a set αSet constituted of at least α stable processes that elect
p as being the leader. We show that p eventually decides. From
propertyRPP -Non triviality of abandon, if p is the only process in
αSet ⊆ ♦PARTp with |αSet| > α that keeps proposing value val =
(vset, vid)with vset ⊆ αSet∧|vset| > α, then p eventually decides
val′ = (vset, vid′). If there does not exist a set αSet constituted of
at least α stable processes, then p stops proposing (Line 8). Since p
has not previously decided, decision equals (⊥,⊥) meaning that p
abandons. �

Theorem 2. Algorithm 2 implements AC by satisfying AC-Validity,
AC-Termination and AC-Agreement.

Proof. Consider a process p. From Lemma 4, if p decides value
val = (vset, vid), then val′ = (vset, vid′) was proposed by some
process q (possible p) in vset and vset is constituted of at least αp
processes. This satisfies the AC-Validity property. From Lemma 6,
if p proposes a value and there exists a set αSet constituted of
at least α stable processes which elect p as the leader, then p
eventually decides. This satisfies theAC-Terminationproperty. Let
p and q be any two processes in αSet ⊆ ♦PPD . From Lemma 5,
there exists an instant after which p and q decide the same value.
This satisfies the AC-Agreement property. �

B.3. Partitionable group membership—Algorithm 3

Lemma 7. If process p installs view v, then p is a member of v.

Proof. Let p be a process that installs view v. Since decision
messages, which contains v are broadcast to the processes
in v.members (Line 9), v is included in the decision message
that p receives (Line 13). Upon the reception of the decision
message (q, decision | decisionq, ∗), p installs view v with v.id =
decisionsq.id (Lines 15–16) only if v.members (Line 14). �

Lemma 8. If process p installs view v after installing view v′, then the
identifier of v is strictly greater that v’s identifier.

Proof. Let p be a process and v its current view. p installs new
view v, the successor of v, only if v.id > v′.id and p ∈ v.members
(Line 14). �

Lemma 9. If process p decides value val = (vset, vid), then val′ =
(vset, vid′) was proposed by some process q (possibly p) in vset that
contains at least αp processes.

Proof. Let p be a process that decides value val = (vset, vid) at
instant t . From Lemma 4, val′ = (vset, vid′) was proposed by
some process q (possibly p) in vset at instant t ′ < t . Consider
that l is the process that proposed value val′ and is the first process
that decides val′—i.e., l is the first process that broadcast decision
message containing value val. This means that l terminated its
consensus instance with the proposed value val = (vset, vid) and
the event AC-return(p, decisionl) with decisionl = (vset, vid) was
generated. This is only possible if l considers itself to be leader of
αSet ⊇ vset (because only proposers can propose values) and if
|vset| > αl (Line 6) at instant at which l proposes value val =
(vset, vid). Therefore, for each process q in vset , αl > αq. Processes
in the set of stable processes vset eventually receive l’s decision
containing val with |val.vset| > αl > αq for each process q in
vset . �

Lemma 10. If there exists a set of stable processes S ⊆ αSet ⊆
♦PARTp that wish to install view val′ = (S, vid′), then all the
processes in S eventually install the same final view val.

Proof. Let S ⊆ αSet ⊆ ♦PARTp be a set of stable processes that
wish to install view val′ = (S, vid′), and p and q be any two
processes in S. From Lemma 3, there exists an instant after which
p and q decide the same value val = (S, vid). From Lemma 9,
val′ = (S, vid′) was proposed by some process q (possibly p) in
S ⊆ αSetp containing at least αp processes. �

Theorem 3. Algorithm 3 implementsPGM: it satisfies self inclusion,
local monotonicity, PGM-Validity and PGM-Agreement on final
view.

Proof. Let p be a process. From Lemma 7, if p installs view v′

then p is a member of v. This satisfies the self inclusion property.
From Lemma 8, if p installs view v after installing view v′ then
v.id > v′.id. This satisfies the localmonotonicity. From Lemma 9, if
a process p decides value val = (vset, vid), then val′ = (vset, vid′)
was proposed by a process q (possible p) in vset and vset contains
at least αp processes. This satisfies the PGM-Validity property.
From Lemma 10, if there exists a set of stable processes S ⊆
αSet ⊆ ♦PARTp thatwish to install view val = (S, vid), then all the
processes in S install eventually the same final view. This satisfies
the PGM-Agreement of final view. �

References

[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On implementing
Omega with weak reliability and synchrony assumptions, in: Proceedings of
the 22nd ACM Symposium on Principles of Distributing Computing, NewYork,
USA, 2003, pp. 306–315.

[2] M.K. Aguilera, A pleasant stroll through the land of infinitely many creatures,
Distrib. Comput. Column ACM SIGACT News 35 (2) (2004) 36–59.

[3] M.K. Aguilera, W. Chen, S. Toueg, Using the heartbeat failure detector for
quiescent reliable communication and consensus in partitionable networks,
Theoret. Comput. Sci. 220 (1) (1999) 3–30.

[4] M.K. Aguilera, W. Chen, S. Toueg, On quiescent reliable communication, SIAM
J. Comput. 29 (6) (2000) 2040–2073.

[5] E. Anceaume, B. Charron-Bost, P. Minet, S. Toueg, On the formal specification
of group membership services, in: Technical Report TR 95-1534, Department
of Computer Science, Cornell University, New York, USA, 1995.

[6] T. Anker, D. Dolev, I. Keidar, Fault tolerant video on demand services,
in: Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, 1999, pp. 244–252.

[7] L. Arantes, P. Sens, G. Thomas, D. Conan, L. Lim, Partition Participant Detector
with Dynamic Paths in MANETs, in: Proceedings of the 9th IEEE International
Symposium on Network Computing and Applications, Cambridge, MA, USA,
2010.

[8] O. Babaoǧlu, R. Davoli, A. Montresor, Group communication in partitionable
systems: specification and algorithms, IEEE Trans. Softw. Eng. 27 (4) (2001)
308–336.

[9] O. Babaoğlu, R. Davoli, A. Montresor, R. Segala, System support for partition-
aware network applications, ACM SIGOPS Operat. Syst. Rev. 32 (1) (1998)
41–56.

[10] R. Baldoni, S. Bonomi, A.M. Kermarrec, M. Raynal, Implementing a Register in
a Dynamic Distributed System, in: Proceedings of the 29th IEEE International
Conference on Distributed Computing Systems, Montreal, Canada, 2009, pp.
639–647.

[11] R. Baldoni, S. Bonomi, M. Raynal, Regular register: an implementation
in a churn prone environment, in: Proceedings of the 16th international
conference on Structural Information and Communication Complexity, 2009,
pp. 15–29.

[12] K. Birman, R. Friedman,M.Hayden, I. Rhee,Middleware support for distributed
multimedia and collaborative computing, Softw.–Pract. Exp. 29 (14) (1999)
1285–1312.

http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref2
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref3
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref4
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref5
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref8
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref9
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref12

L. Lim, D. Conan / J. Parallel Distrib. Comput. 74 (2014) 2708–2721 2721
[13] K.P. Birman, T.A. Joseph, Exploiting Virtual Synchrony in Distributed Systems,
in: Proceedings of the 11th ACM Symposium on Operating Systems Principles,
Austin, USA, 1987, pp. 123–138.

[14] R. Boichat, P. Dutta, S. Frølund, R. Guerraoui, Deconstructing Paxos, Distrib.
Comput. Column ACM SIGACT News 34 (1) (2003) 47–67.

[15] R. Boichat, P. Dutta, S. Frølund, R. Guerraoui, Reconstructing Paxos, Distrib.
Comput. Column ACM SIGACT News 34 (2003) 42–57.

[16] M. Boulkenafed, D. Sacchetti, V. Issarny, Using group management to tame
mobile Ad hoc networks, in: Proceedings of IFIP TC 8 Working Conference on
Mobile Information Systems, 2005, pp. 245–260.

[17] E. Brewer, Towards robust distributed systems, in: Invited Talk, Proceedings of
the 19th ACM symposium on Principles of distributed computing, USA, 2000.

[18] D. Cavin, Y. Sasson, A. Schiper, Consensus with unknown participants
or fundamental self-organization, in: Proceedings of the 3rd International
Conference on Ad Hoc Networks andWireless, Vol. 20(3158), Springer-Verlag,
Vancouver, British Columbia, Canada, 2004, pp. 135–148.

[19] T.D. Chandra, V. Hadzilacos, S. Toueg, B. Charron-Bost, On the Impossibility of
GroupMembership, in: Proceedings of the 15thACMSymposiumon Principles
of Distributing Computing, Philadeplhia, USA, 1996.

[20] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed
systems, J. ACM 43 (1996) 225–267.

[21] G.V. Chockler, I. Keidar, R. Vitenberg, Group communication specifications:
A comprehensive study, ACM Comput. Surv. 33 (4) (2001) 427–469.

[22] D. Conan, P. Sens, L. Arantes, M. Bouillaguet, Failure, Disconnection and
Partition Detection in Mobile Environment, in: Proceedings of the 7th IEEE
International Symposium on Network Computing and Applications, 2008,
pp. 119–127.

[23] M. Filali, V. Issarny, P. Mauran, G. Padiou, P. Quéinnec, Maximal Group
Membership in Ad Hoc Networks, in: Proceedings of the 6th International
Conference on Parallel Processing and Applied Mathematics, Poznan, Poland,
2006, pp. 51–58.

[24] S. Gilbert, N.A. Lynch, Perspectives on the CAP theorem, IEEE Computer 45 (2)
(2012) 30–36.

[25] F. Greve, P. Sens, L. Arantes, V. Simon, A failure detector for wireless networks
with unknown membership, in: Proceedings of the 17th International
Conference on Parallel Processing, Springer-Verlag, Berlin, Heidelberg, 2011,
pp. 27–38.

[26] R. Guerraoui, R. Oliveira, A. Schiper, Stubborn Communication Channels,
in: Technical Report TR97, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, 1997.

[27] R. Guerraoui, L. Rodrigues, Introduction to Reliable Distributed Programming,
Springer-Verlag, NJ, USA, 2006.

[28] R. Guerraoui, A. Schiper, The generic consensus service, IEEE Trans. Softw. Eng.
27 (1) (2001) 29–41.

[29] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[30] L. Lamport, The part time parliament, ACM Trans. Comput. Syst. 16 (2) (1998)
133–169.

[31] L. Lamport, Paxos made simple, Distrib. Comput. Column ACM SIGACT News
32 (4) (2001) 18–25.
[32] L. Lim, Partitionable group membership for mobile ad hoc networks, Ph.D.
Thesis, Institut Mines-Télécom, Télécom SudParis, France, 2012. (in French).

[33] L. Lim, D. Conan, An eventual alpha partition-participant detector for manets,
in: Proceedings of the 9th EuropeanDependable Computing Conference, Sibiu,
Romania, 2012, pp. 25–36.

[34] M. Merritt, G. Taubenfeld, Computing with Infinitely Many Processes Under
Assumptions on Concurrency and Participation, in: Proceedings of the 14th
international symposium on DIStributed Computing, 2000, pp. 164–178.

[35] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson, D. Agrawal, A. El Abbadi,
From Static Distributed Systems to Dynamic Systems, in: Proceeding of the
24th IEEE Symposium on Reliable Distributed Systems, Florianpolis, Brazil,
2005, pp. 109–118.

[36] P. Murray, A Distributed State Monitoring Service for Adaptive Application
Management, Proceedings of the IEEE International Conference on Depend-
able Systems and Networks, Washington, DC, USA, 2005, 200–206.

[37] M. Nesterenko, A. Schiper, On properties of the group membership problem,
in: Technical Report, TR-KSU-CS-2007-01, Kent State University, 2007.

[38] S. Pleish, O. Rütti, A. Schiper, On the Specification of Partitionable Group
Membership, in: Proceedings of the 7th European Dependable Computing
Conference, Kaunas, Lithuania, 2008, pp. 37–45.

[39] S. Sastry, S. Pike, Eventually Perfect Failure Detectors Using ADD Channels,
in:Proceedings of the 5th international Symposiumon Parallel andDistributed
Processing and Applications, Nigara Falls, Canada, 2007, pp. 483–496.

Léon Lim is a temporary assistant professor in Computer
Science at Institut Mines-Télécom, Télécom SudParis. He
received a B.Sc. in Computer Science from the University
of Évry in 2008, and a Ph.D. in Computer Science from
Institute Mines-Téłécom, Télécom SudParis in 2012. His
research interests are in the areas of dependability,
fault-tolerant distributed systems, partitionable group
membership and middleware.

Denis Conan is an associate professor at Institut Mines
Télécom, Télécom SudParis since 2000. Before that, hewas
a research engineer at Alcatel. He obtained his Ph.D. in
Computer Science from the University of Paris 6, France
in 1996 and his engineer diploma at ENSIIE, Évry, France
in 1992. His research areas of interest are distributed
systems, distributed algorithms, fault tolerance, software
architecture, and pervasive and ubiquitous computing.

http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref14
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref15
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref18
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref20
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref21
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref24
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref25
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref26
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref27
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref28
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref29
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref30
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref31
http://refhub.elsevier.com/S0743-7315(14)00059-8/sbref37

	Partitionable group membership for Mobile Ad hoc Networks
	Introduction
	Distributed system model
	Crash-recovery and infinite arrival models
	Asynchronous event-based composition model
	Execution, global history and causal order
	MANET links
	Groups and views

	Problems in existing specifications
	Safety properties
	Liveness properties
	Problems in the specifications

	Enriched distributed system model
	Fairness, reachability and timeliness
	Stable partition, stability condition and stability criterion
	Illustrative example

	Abortable consensus-based partitionable group membership
	Architecture
	Specification of the partitionable group membership
	Specification of the abortable consensus
	Specification of the eventual α partition-participant detector
	Specification of the retransmission module
	Specification of the eventual register per partition

	Implementation
	Eventual α partition-participant detector and retransmission module
	Eventual register per partition
	Abortable consensus
	Partitionable group membership

	Related works
	Participant detectors in MANETs
	Registers for dynamic systems
	Partitionable group membership for MANETs

	Conclusion
	Formal definitions, predicates, properties, and assumptions
	Preliminary definition and predicates for presenting properties and definitions of partitionable group membership
	First set of properties and definitions of partitionable group membership
	Comparison, addition and subtraction operations on view identifiers
	Properties of PGM , AC , PPD , the retransmission module, and RPP

	Proofs of correctness
	 RPP ---Algorithm 1
	 AC ---Algorithm 2
	Partitionable group membership---Algorithm 3

	References

