DOMINT: Disconnected Operation for Mobile
INternetworking Terminals

Denis Conan, Sophie Chabridon, Lydialle Chateigner, Nabil Kouici, Nawel Sabri, and
Guy Bernard
GET / INT, CNRS UMR SAMOVAR 9 rue Charles Fourier, 91011 Evry, France

firsthame.surname@int-evry:.fr

1. INTRODUCTION

In the future IT society, mobility and disconnections will be
the rule and no longer the exception. The adaptation to
the characteristics of mobile computing can be performed
by the application (laissez-faire strategy), by the system
(transparent strategy), or by both the application and the
system (collaboration strategy) [8]. As surveyed in [4], there
is much work dealing with mobile information access that
demonstrates that the laissez-faire and the transparent ap-
proaches are not adequate. Our collaboration approach
is threefold. We define a development process called Mo-
bile Application Development Approach (MADA) that is
model-driven, architecture-based, and component-oriented,
and which follows the Model-Driven Approach (MDA) of
the Object Management Group (OMG). Application de-
velopers are responsible for specifying specific elements of
their distributed applications in terms of meta-data driv-
ing cache management [5] and operation transforms per-
forming reconciliation [2]. The “default” behaviour speci-
fied by developers may be dynamically adapted by users
and middleware through reflexion. Then, we design and im-
plement a middleware platform called DOMINT that hides
as much as possible the details of the hardware, the op-
erating system, and the telecommunication protocols from
application developers and users. DOMINT is integrated in
the component-oriented middleware OpenCCM (7] conform-
ing to the CORBA Component Model (CCM) of the OMG.
Next, users and middleware services can rely on several de-
tectors (included in DOMINT too) well suited to mobile en-
vironments: namely, connectivity, disconnection, and failure
detectors [9]. The approach is generic and can be applied to
other models of software architectures and components.

2. MADA

In our collaboration approach for dealing with disconnected
operation, developers specify the behaviour of the dis-
tributed application while being disconnected in terms of
cache management and reconciliation semantics.

2.1 Modelling of cache management

In Coda, Odyssey, and Rover [4], non-optimal or bad choices
can be made when users do not fully understand the applica-
tion, and the application can then freeze. We propose three
types of meta-data to select the entities to work with while
being disconnected. The disconnectability meta-data con-
tain information indicating whether a “server” object on a
remote host can have a proxy on the mobile terminal. This
proxy called a disconnected entity will be used during dis-
connection. Then, a necessary entity is a disconnectable one
whose corresponding disconnected entity on the mobile ter-
minal must be present for the disconnected mode. Finally,
since memory space on a mobile terminal is scarce, priorities
are assigned to disconnected entities.

In the software architecture, use cases identify applica-
tion functionalities (services) which are accessed by users
through a GUI linked to a local component acting as a
“Fagade” (design pattern). Architects specify which use
cases are disconnectable (provided) and necessary during
disconnection, and their corresponding priority. Thanks to
other views [6], architects tag interfaces, components, etc.
Figure 1 depicts the rest of the development process: the
Platform Independent Model (PIM) is transformed into a
Platform Specific Model (PSM) following a CCM profile for
disconnection management.

...

Language "+

TSDU ce langui
Specification of
the transformation

lTavge(langua

Specification of '
the transformation

Target language |

I
anguage ‘
I
[t

Figure 1: MDA view of MADA

2.2 Reconciliation management

Potential disconnections of mobile terminals can lead to di-
vergence between the disconnected entity and the remote
one remained on the server side. This calls for reconciliation
mechanisms in order to synchronise both entities at recon-
nection time. Reconciliation management is based on the

SOCT4 algorithm [10] from the operation transforms tech-
nology. This algorithm exploits operations semantic prop-
erties in order to serialise them and to maintain the shared
object consistency. We now briefly present the main charac-
teristics of SOCT4. Two operations opl and op2 are causally
dependent if op2 depends on the effects of opl or inversely.
Two operations are called concurrent if they are not causally
linked and performed from the same initial state on two dis-
tinct sites.

To guarantee data consistency at the reconciliation step,
the operation transform technique requires the satisfaction
of three conditions: 1) Causality preservation - A simple
way to ensure causality preservation is to have operations
be sequentially ordered using a global sequencer. 2) User
intention preservation - Two concurrent operations can be
executed in different order on different sites. However, in or-
der to preserve user intention, if a site performs opl before
op2, the effect produced by opl has to be taken into account
when op2 is executed. The solution consists in transforming
the operation before it is executed using a forward trans-
position. 3) Copies convergence - In order to obtain the
consistency in all cases, the forward transposition used in
SOCT4 has to verify that the execution of opl followed by
the execution of op2 which takes into account the modifi-
cations generated by opl produces the same result as the
execution of op2 followed by opl applied on op2.

3. DOMINT

3.1 Architecture

We designed a first platform dealing with disconnected
CORBA objects [3]. The concepts of component, container,
factory, and required and provided interfaces allow for a
cleaner design (well-defined interception points, separation
of concerns...). Figure 2 depicts the architecture with the
main middleware services: cache management, reconcilia-
tion management, and detectors. The first two of them work
collaboratively with the components of the application, the
last one is transparent to them.

e | [T} T

‘ ClientDisconnectionController

CacheManager

ReconciliationManager

ServerDisconnectionController

Failure, Disconnection
Connectivity Detectors

Figure 2: Architecture of DOMINT

3.2 Detectors for context management
Disconnections and failures need to be detected so that the
middleware itself or the application can perform preventive
and corrective actions. In addition to unreliable failure de-
tectors [1], we introduce connectivity and disconnection de-
tectors [9].

Connectivity detectors are entities dedicated to the esti-
mation of local resources availability (battery, bandwidth,

memory...) for wireless communication. The connectiv-
ity detector relies on a hysteresis mechanism for smoothing
variations in resource availability. The thresholds of the hys-
teresis are configurable by application users, allowing them
to define what is strong, weak, or null connectivity. Discon-
nection detectors execute a distributed algorithm that tries
to notify neighbouring entities just before disconnection and
that detects the disconnection of remote entities. When no-
tification messages cannot be transmitted, the disconnection
may be seen as a failure, thus preserving safety properties.
Hence, the semantics of the distributed applications (e.g.,
the properties of the consensus) can take disconnections into
account in addition to failures.

4. CONCLUSION

The development of DOMINT for OpenCCM is in progress.
Structural reflection through disconnected component cache
management and behavioural reflection through container
interception mechanisms allow adaptation to application
needs. The platform is under evaluation on an application
scenario for crisis management with groups of mobile users.

5. REFERENCES
[1] T. D. Chandra and S. Toueg. Unreliable Failure
Detectors for Reliable Distributed Systems. JACM,
43(2), Mar. 1996.

[2] L. Chateigner, S. Chabridon, and G. Bernard. Service
de réconciliation pour la synchronisation de copies. In
Journées Mobilité et Ubiquité, Nice, France, June
2004. In French.

[3] D. Conan, S. Chabridon, O. Villin, and G. Bernard.
Disconnected Operations in Mobile Environments. In
Proc. 2nd IPDPS Workshop on Parallel and
Distributed Computing Issues in Wireless Networks
and Mobile Computing, Apr. 2002.

[4] J. Jing, A. Helal, and A. Elmagarmid. Client-Server
Computing in Mobile Environments. ACM CSUR,
31(2), June 1999.

[5] N. Kouici, N. Sabri, D. Conan, and G. Bernard.
MADA, une approche pour le développement
d’applications mobiles. In Journées Mobilité et
Ubiquité, June 2004. In French.

[6] P. Kruchten. The 4+1 View Model of Architecture.
IEEE Software, 12(6):42-50, Nov. 1995.

[7] ObjectWeb. OpenCCM home page.
http://www.objectweb.org/openccm, 2003.

[8] M. Satyanarayanan. Fundamental Challenges in
Mobile Computing. In Proc. 15th ACM PODC, May
1996.

[9] L. Temal and D. Conan. Détections de défaillances, de
connectivité et de déconnexion. In Journées Mobilité
et Ubiquité, June 2004. In French.

[10] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies
convergence in a distributed real-time collaborative
environment. In Proc. ACM CSCW, Dec. 2000.

