
'

&

$

%

DOMINT: Disconnected Operation for Mobile INternetworking Terminals
Denis Conan, Sophie Chabridon, Lydialle Chateigner, Nabil Kouici, Nawel Sabri, and Guy Bernard

GET / INT, CNRS UMR SAMOVAR Évry, France
'

&

$

%

�
�

�
�Introduction

Since the early 90’s, the field of mobile computing has witnessed tremendous research and
technological advances. With wireless communications and mobile hand-held or wearable
devices becoming a reality, new applications where users can have access to information
anytime, anywhere are made possible. In the future IT society, terminal mobility and dis-
connections will be the rule and no longer the exception (Cf. Figure 1). The emergence
of the new field of pervasive computing as a successor to both distributed systems and
mobile computing enforces this vision: environments will be “saturated with computing and
communication capability, yet gracefully integrated with human users” [9].

Wireless network

Mobile terminal

uncovered area

Figure 1: terminal mobility.

As depicted in Figure 2, the adaptation to the characteristics of mobile computing can be
performed by the application (laissez-faire strategy), by the system (transparent strategy), or
by both the application and the system (collaboration strategy) [8]. As surveyed in [4], there
is much work dealing with mobile information access that demonstrates that the laissez-faire
and the transparent approaches are not adequate.

Application−aware

Laissez−faire Application−transparent

Identification of application changes, context−awareness, middleware services

Figure 2: Adaptation stratgegies: MADA follows the collaboration approach.

Our collaboration approach is threefold. We define a development process called Mobile
Application Development Approach (MADA) that is model-driven, architecture-based, and
component-oriented, and which follows the Model-Driven Approach (MDA) of the Object
Management Group (OMG). Application developers are responsible for specifying some el-
ements of their distributed applications in terms of meta-data driving cache management [5]
and operation transforms performing reconciliation [2]. The “default” behaviour specified
by developers may be dynamically adapted by users and middleware through reflection.
Then, we design and implement a middleware platform called DOMINT that hides as much
as possible the details of the hardware, the operating system, and the telecommunication
protocols from application developers and users. DOMINT is integrated into the component-
oriented middleware OpenCCM [7] conforming to the CORBA Component Model (CCM) of
the OMG. Next, users and middleware services can rely on several detectors (included in
DOMINT too) well suited to mobile environments: namely, connectivity, disconnection, and
failure detectors [10]. The approach is generic and can be applied to other models of soft-
ware architectures and components.

�
�

�
�MADA

In our collaboration approach for dealing with disconnected operation, developers specify
the behaviour of the distributed application while it is being disconnected in terms of cache
management and reconciliation semantics.�

�
�
�Modelling of cache management

In Coda, Odyssey, and Rover [4], non-optimal or bad choices can be made when users
do not fully understand the application, and the application can then freeze. We propose
three types of meta-data to select the entities to work with while being disconnected. The
disconnectability meta-data contain information indicating whether a “server” object on a
remote host can have a proxy on the mobile terminal. This proxy (called a disconnected
entity) will be used during disconnection. Then, a necessary entity is a disconnectable one
whose corresponding disconnected entity on the mobile terminal must be present for the
disconnected mode. Finally, since memory space on a mobile terminal is scarce, priorities
are assigned to disconnected entities.

In the software architecture, use cases identify application functionalities (services)
which are accessed by users through a GUI linked to a local component acting as a
“Façade” (design pattern). Architects specify which use cases are disconnectable (pro-
vided) and necessary during disconnection, and their corresponding priority. Thanks to
other views [6], architects tag interfaces, components, etc. Figure 3 depicts the rest of
the development process: the Platform Independent Model (PIM) is transformed into a
Platform Specific Model (PSM) following a CCM profile for disconnection management.

PIM EDOC

PSM

PIMDisc EDOCDisc

UML4CCMDiscPSMDisc UML4CCM

(a) (b)

used
Language

Specification of
the transformation

used
Language

Specification of
the transformation

used
Language

used
Language

Source language

Target language

Source language

Target language

Figure 3: MDA view of MADA.�
�

�
�Reconciliation management

Potential disconnections of mobile terminals can lead to divergence between the discon-
nected entity and the remote one remained on the server side. This calls for reconciliation
mechanisms in order to synchronise both entities at reconnection time. Reconciliation man-
agement is based on the SOCT4 algorithm [11] from the operation transforms technology.
This algorithm exploits operations semantic properties in order to serialise them and to
maintain the shared object consistency. We now briefly present the main characteristics of
SOCT4. Two operations op1 and op2 are causally dependent if op2 depends on the effects
of op1 or inversely. Two operations are called concurrent if they are not causally linked and
performed from the same initial state on two distinct sites.

To guarantee data consistency at the reconciliation step, the operation transform technique
requires the satisfaction of three conditions: 1) Causality preservation - A simple way to
ensure causality preservation is to have operations be sequentially ordered using a global
sequencer. 2) User intention preservation - Two concurrent operations can be executed
in different order on different sites. However, in order to preserve user intention, if a site
performs op1 before op2, the effect produced by op1 has to be taken into account when
op2 is executed. The solution consists in transforming the operation before it is executed
using a forward transposition. 3) Copies convergence - In order to obtain the consistency in
all cases, the forward transposition used in SOCT4 has to verify that the execution of op1
followed by the execution of op2 which takes into account the modifications generated by
op1 produces the same result as the execution of op2 followed by op1 applied on op2.

�
�

�
�DOMINT architecture

We designed a first platform dealing with disconnected CORBA objects [3]. The concepts
of component, container, factory, and required and provided interfaces allow for a cleaner
design (well-defined interception points, separation of concerns. . . ). Figure 4 depicts the
architecture with the main middleware services: cache management, reconciliation man-
agement, and detectors. The first two of them work collaboratively with the components of
the application, the last one is transparent to them.

CacheManager

ReconciliationManager

Failure, Disconnection

ClientDisconnectionController ServerDisconnectionController

Server ComponentClient Component

Connectivity Detectors

Figure 4: Architecture of DOMINT.�
�

�
�Detectors for context management

Disconnections and failures need to be detected so that the middleware itself or the
application can perform preventive and corrective actions. In addition to unreliable failure
detectors [1], we introduce connectivity and disconnection detectors [10].

Connectivity detectors are entities dedicated to the estimation of local resources avail-
ability (battery, bandwidth, memory. . . ) for wireless communication. The connectivity detec-
tor relies on a hysteresis mechanism for smoothing variations in resource availability. The
thresholds of the hysteresis are configurable by application users, allowing them to define
what is strong, weak, or null connectivity. Disconnection detectors execute a distributed al-
gorithm that tries to notify neighbouring entities just before disconnection and that detects
the disconnection of remote entities. When notification messages cannot be transmitted,
the disconnection may be seen as a failure, thus preserving safety properties. Hence, the
semantics of the distributed applications (e.g., the properties of the consensus) can take dis-
connections into account in addition to failures. Figure 5 depicts the detectors relationships.

host host

host

Host failure

Failure detection

Connectivity detection

Disconnection

Disconnection detection

Figure 5: Detectors: Connectivity, disconnection and Failure.

�
�

�
�Conclusion

The development of DOMINT for OpenCCM is in progress. Structural reflection through
disconnected component cache management and behavioural reflection through container
interception mechanisms allow adaptation to application needs. The platform is under eval-
uation on an application scenario for crisis management with groups of mobile users.

References
[1 ] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems. JACM, 43(2):225–267, Mar. 1996.

[2 ] L. Chateigner, S. Chabridon, and G. Bernard. Service de réconciliation pour la synchronisation de copies. In Proc. ACM UbiMob,

Nice, France, June 2004. In French.

[3 ] D. Conan, S. Chabridon, O. Villin, and G. Bernard. Disconnected Operations in Mobile Environments. In Proc. 2nd IPDPS

Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing, Apr. 2002.

[4 ] J. Jing, A. Helal, and A. Elmagarmid. Client-Server Computing in Mobile Environments. ACM CS, 31(2):117–157, June 1999.

[5 ] N. Kouici, N. Sabri, D. Conan, and G. Bernard. MADA, une approche pour le développement d’applications mobiles. In Proc. ACM

UbiMob, June 2004. In French.

[6 ] P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42–50, Nov. 1995.

[7 ] ObjectWeb. OpenCCM home page. http://www.objectweb.org/openccm, 2003.

[8 ] M. Satyanarayanan. Fundamental Challenges in Mobile Computing. In Proc. 15th ACM SOSP, Philadelphia, USA, May 1996.

[9 ] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal Communications, 8(4):10–17, Aug. 2001.

[10 ] L. Temal and D. Conan. Détections de défaillances, de connectivité et de déconnexion. In Proc. UbiMob, June 2004. In French.

[11 ] N. Vidot, M. Cart, J. Ferrié, and M. Suleiman. Copies convergence in a distributed real-time collaborative environment. In Proc.

ACM CSCW, Dec. 2000.


