
Fault-tolerance in Mobile Environments:
A Partition Detection System

Muhammad Usman Bhatti and Denis Conan
GET / INT, CNRS UMR SAMOVAR

9 rue Charles Fourier, 91011 Évry, France
usman.bhatti,denis.conan@int-evry.fr

Abstract

Wireless networks are more ubiquitous than before and
they present a whole new set of problems with their incep-
tion. Disconnection is one of such problems where mobile
terminals can disconnect. Failure is another problem that is
inherited from the distributed systems. The two may create
partitions in the distributed systems which are necessary to
be detected for fault tolerance in mobile environments. In
this work, we present a partition detection service based on
the knowledge of network topology. This service is interop-
erable with group communication system.

1. Introduction

Recent advancements in wireless data networking and
portable information appliances have given the concept of
mobile computing. Users can access information and ser-
vices irrespective of their movement and physical location.
Wireless communication, data processing and information
services are becoming more and more important. With the
increasing use of mobile terminals and mobile applications,
mobility is an extra-functional feature which has become
very significant.

Mobile terminals are exposed to vast environments. The
mobility of a mobile terminal gives rise to frequent discon-
nections. These disconnections can be of two types: vol-
untary disconnections and involuntary disconnections; the
former ones are decided by the users and the latter ones,
a result of absence of wireless network signals. Discon-
nections can be very frequent and mobile terminals should
continue working even while they are disconnected from
the network. Hence, a mechanism is needed for measur-
ing signal strength in order to anticipate for the forthcom-
ing disruption in the network connectivity. We can call it
connectivity detector. In addition, disconnection detector
is necessary for the voluntary disconnection and involun-

tary disconnections in order to send an "alert" message to
the other nodes declaring its disconnection. [8] presents the
idea of disconnection and failure management in mobile ap-
plications.

Fault-tolerance is essential for distributed applications.
Fault-tolerance comes in two phases: fault detection and
fault correction [6]. Fault detection helps in maintaining
application’s safety and fault correction aides in maintain-
ing application’s liveness. In pure asynchronous distributed
systems, consensus is insolvable in the presence of even one
faulty process [5]. This problem arises from the fact that we
cannot differentiate amongst the faulty processes and the
processes which are too slow. Nevertheless, unreliable fail-
ure detectors have been proposed, which help us solve the
problem of consensus [3].

Group communication systems (GCSs) are widely rec-
ognized as powerful building blocks for supporting consis-
tency and fault-tolerance in distributed applications. The
basic idea supported by GCSs is the notion of multicast
group. Multicast groups are created on the fly by a group
membership service. Traditionally, GCSs are employed in
replicated objects and database consistency applications.
Distributed systems are prone to process crashes as well as
link failures. Failures may cause a component or several
sets of components to detach from the system, thus making
a separate group disparting from the main network, making
partition of the system. Partitions may result in service re-
duction or degradation but need not necessarily render the
application completely unavailable. Partitions are a fact of
life in most distributed systems and they tend to become
more frequent as the geographic extent of the system grows
or its connectivity weakens due to the presence of mobile
units and wireless links. Thus, the partitions should per-
form as autonomous distributed systems providing services
to their clients. The notion of partitionable GCS is an exam-
ple where all the partitions are allowed to proceed in their
computations [7].

In this work, we are trying to workout the problem of

1



partition detection in wireless group communication sys-
tem. Section 2 describes the existing work which we are
going to reuse for our purposes. We describe the notion
of failure and disconnection detectors. Section 3, we com-
pare the aspects of partitions and failures. Section 4 repeats
the same exercise for partitions and disconnections. In Sec-
tion 5, we develop algorithms to differentiate among dis-
connection, failure and partition. In Section 7, we present
a group membership service. Finally, Section 8 concludes
the article and gives perspectives.

2. Related Work

We consider asynchronous distributed systems. They are
distributed systems without bounds on message delay, clock
drift or time necessary to execute a step. The system con-
sists of processes and the processes communicate by mes-
sage passing. As we have no bound on message delay, we
cannot distinguish if a message is only taking too long to
reach its destination or it is a failure [5]. To circumvent this
impossibility result, [3] proposed failure detectors, which
monitor a subset of processes for failures and can make mis-
takes, thus the name unreliable failure detectors. Each pro-
cess has an access to a failure detector module. Each mod-
ule monitors a subset of processes in the system, and main-
tains a list of those that it currently suspects to have crashed.
Failure detectors can be erroneous in their suspicions: they
can suspect that process p has crashed while it is still run-
ning. Later on, they will remove p from the list of suspects if
suspicion was erroneous. Failure detectors have two proper-
ties in terms of their functionality. Completeness states that
there is a correct process which suspects every faulty pro-
cess. Completeness is an important property as it satisfies
the safety requirements for a failure detector. Completeness
can be divided into two properties: weak completeness and
strong completeness. Completeness in itself is not a useful
property and has to be augmented with an accuracy property
which restricts the mistakes that failure detector can make.
Thus, accuracy states that no process is suspected before it
crashes. Accuracy satisfies the liveness requirements of a
system. Accuracy is divided into four properties, which are
strong accuracy, weak accuracy, eventual strong accuracy,
and eventual weak accuracy.

Apart from failures, mobile computing presents another
challenge for wireless distributed system developers, which
arises from the mobility of terminals. A mobile process,
part of a distributed system, may not be slow or faulty but
it may not find itself connected to the network because it
has moved out of the communication range. Connectivity
detectors are based on the idea of connectivity managers,
first presented in [4]. The idea is to monitor the network
resources to foresee the network disconnection. When a
network disconnection occurs on the link, which is used by

the application, the connectivity manager detects the dis-
connection event and notifies either the application or some
other service. In order to insulate the application from the
insignificant variations in resource level, the connectivity
manager relies on an hysteresis mechanism for smoothing
variations in resource availability. The connectivity infor-
mation is local to each node. For this reason, disconnection
detectors were introduced which could transmit this local
connectivity information to all the connected processes [8].
Disconnection detector, like failure detector, is described
in abstract terms to generalize the model and to avoid any
implementation-specific details. For this purpose, abstract
properties like disconnection completeness and disconnec-
tion accuracy have been defined.

A failure occurs when a process crashes due to an inter-
nal failure and does not make any progress. A partition on
the other hand, is a problem of the network or a connect-
ing node, while the processes do not crash. In the following
sections, we explore these issues.

3. Partition and Failure

The general model of failure detection works as follows:
the sender sends a “ping” message and the receiver replies
with an “ACK” message. Thus, both sender and receiver
know that both of them are “alive”. When there is an ab-
sence of a reply for a certain amount of time, called “time-
out”, the sender declares the receiver as faulty, or more gen-
erally "problematic". Figure 1-a shows that the message m

is lost due to a link failure even if both processes, p and
q, are alive. Figure 1 depicts this situation where a pro-
cess q sends a message m to another process p. Figure 1-b
shows that the receiver crashes and does not reply to the
message m. In both situations, the process on the other
side of the network is declared faulty, while that process
is not responding or is not receiving the message due to link
problems. This deficiency comes from the inherent mech-
anism of failure detection using the “ping” message. Thus,
we have an impossibility result here that we cannot distin-
guish between link failure and process failure. This result
comes from the fact that we cannot distinguish between link
failure and process failure by the existing failure detection
techniques, defined in Section 2.

A partition occurs when two processes detach them-
selves such that every process within the partition considers
the other processes within the partition to be alive. In the
literature, processes outside a partition are considered to be
faulty. Therefore, more information needs to be collected
for the distinction of failure and partition.

Two processes are called reachable if they can communi-
cate with each other directly, or through some other process,
which routes the messages to correct processes. A num-
ber of events can cause the reachability of the processes to



Link Failures leading to Partitions(a)
Process Failures leading to Partitions(b)

p

q

r
s

t

p

q

r s

t

s

q
t

r

s
p

q

r

t

Figure 1. Failure and Partition

be changed into unreachability, namely link crashes, buffer
overflows, incorrect and inconsistent routing tables. A pro-
cess crash, may as well, render the two processes as un-
reachable.

Heartbeat failure detector for partitions is based on the
algorithm for partitionable networks defined by [1]. We
modify the algorithm so that every process generates the set
of processes reachable through each neighbor of its neigh-
bors. These list are then used by the partition detector in
Section 5.

4. Partition and Disconnection

While failure detectors make it impossible to distinguish
failures from partitions, disconnection detectors does not
have this shortcoming because when a process disconnects,
it sends a disconnection message to all the processes it is
connected to. In this section, we mainly discuss the pecu-
liarities associated with disconnection detector.

As defined earlier, processes send an “alert” message be-
fore they disconnect, thus announcing any disconnection
leading to a partition. But, still we need additional infor-
mation to know if the disconnecting process is creating a
situation depicted in Figure 2. In the figure, process p dis-
connects by sending message d to detach two sets of pro-
cesses. One thing to note here is that with the disconnec-
tion message, process q only knows about the disconnec-
tion of process p. Had it known it was connected to process
r through p, then it would have declared that process p dis-
connects to form two partitions of the network. Hence, we
need some network topology information for detecting any
disconnection leading to partitions. One more thing to con-
sider is that processes might be disconnected and reconnect
afterwards restoring the original topology as in Figure 2.

We reuse the very same notion of reachability as intro-
duced earlier, that is, two processes are reachable if they can
communicate with each other directly, or using a third pro-
cess as a router. Disconnections may change reachability
as well. Looking at Figure 2, we can infer that reachabil-
ity of processes p and q changes completely thus changing
the reachability of other processes, making q unreachable to

processes r and s.

p

q

r
s

t
q

t

r s

d

d

Disconnection leading to Partitions

Figure 2. Disconnection and Partition

5. Partition Detection

The architecture for partition detection and membership
management is presented in Figure 3. Partition detection is
performed using the information collected from the discon-
nection detector and the failure detector. This information is
used by the membership service for view formation. In the
two preceding sections, we have seen that we cannot dis-
tinguish amongst disconnection, failure and partition using
the existing works. Therefore, additional information has to
be collected. We develop two algorithms for partition de-
tection: The neighborhood topology and the global topol-
ogy. In this section, we sketch these two algorithms that
we develop in the framework of this work. In Section 5.1,
we present the partition detector based on neighborhood in-
formation. In section 5.2, we present the partition detector
based on global topology information.

5.1. Partition Detection with Neighborhood Topol-
ogy

Neighborhood topology tries to discover partition forma-
tion using the network topology of the neighbors. The idea
of neighborhood connectivity is to find the neighbors of the
neighbors, as defined earlier. In Figure 4, process p tries to
discover the neighbors of process w and q. We construct
our neighborhood topology in two layers, as shown in Fig-
ure 3. The lower layer, consisting of the failure and the



Connectivity
Detector

Membership
Service

Detector
Disconnection Failure

Detector

Detector
Partition

Figure 3. Disconnection, Failure and Partition
Detector

disconnection detectors, collects the reachability informa-
tion and passes it to the partition detector, which uses this
information for finding partitions in the network. Partition
detection starts as soon as a disconnection or a failure is
detected in the system. Every process that disconnects or
fails eventually provokes a partition detection at a neighbor
and every process reachable through only that neighbor is
declared partitioned. In this way, neighborhood topology
leads to partition detection by neighbors which disseminate
this information to all the processes in the network.

q

p
r

s

t

u
v

w

Figure 4. Reachability Pattern

5.2. Partition Detection with Global Topology

The second partition detector algorithm also uses the two
previously defined algorithms, failure and disconnection de-
tection for partition detection. The algorithm constructs a
knowledge of the global topology instead of the neighbor-
hood topology. We assume that the topology (processes
plus links) is known at the starting time of the distributed
application —i.e., there exist configuration data describing
the initial configuration of the distributed application and
these data are known to every process of the distributed ap-
plication. Then, during the execution, new processes and
new links are explicitly added and committed by all the pro-
cesses of a partition. Each process updates the graph by
tagging nodes due to disconnections, failure, or partitions.
One major change is that partition message is not needed to
be sent to any neighbors. This is because the knowledge of

partitions is global in this algorithm and all the reachable
processes can detect the processes that have partitioned.

6. Topology and Application-based Decisions

Our work differentiates between physical topology and
logical topology. The difference between the physical
topology and the logical topology comes from the fact that
in our work, we only consider two processes reachable if
they have the ability of communicate with each other. For
us, this is a higher level of abstraction than actually looking
at physical links that link two or more processes. We com-
bine the reachability information with the physical topol-
ogy by discovering the links connecting two neighbors in
the partition detector, meaning that we gather the reach-
ability information with the help of the individual neigh-
bors. Consequently, every process constructs its local view
by discovering the processes reachable through a neighbor
and collecting them in one set. Thus, a neighborhood logi-
cal topology is built, instead of actual link in order to esti-
mate the connectivity patterns. The second algorithm keeps
a global information of each link and process. In case of
link and process failures, the global topology is affected.
This change is seen by all the processes within the current
partition and they tag the links and processes.

Failure detectors and neighborhood information can only
provide hints for applications. Thus, the sets of processes in
the two partitions can only "speculate" what has gone wrong
on the other side, since they cannot communicate directly.
It is the application which will decide, considering its func-
tionality, whether to drop the users or open new connections
to them. Thus, there can be an optimistic approach and a
pessimistic approach.

7. Group Membership Algorithm

We propose the following algorithm for the member-
ship service. The partition detectors provide the set of
reachable processes and the membership service tries to
build a view consisting of all the mutually reachable pro-
cesses in reachablep (reachablep corresponds to the vari-
able in the partition detector). Every process p that de-
tects a change in its set reachablep sends a message
(JOIN_VIEW, new_vid, reachablep) to all the processes
in the new set reachablep. We assume that there is an en-
tity in the systems that generates the view identifiers (vid).
Thus, it generates view identifiers (vid) that are monotoni-
cally increasing with time. Every process that receives the
view change message may be in two states: it may be in
a view having a vid lower than that of the sending pro-
cess or the process is already in the process of changing
a view. For the first case, the process q accepts the mes-



sage, changes its set reachableq according to the informa-
tion sent by reachablep and sends an “ACK” message. The
process that initiates the view change process, adds all the
processes which sent an “ACK” to the new view. A new
view message is sent to all the process in the new view of the
form (new_vid, vcomp) corresponding to new view identi-
fier and the view composition respectively. A disconnected
process may install a new view consisting of its own; so, it
can carry on its computation even in the disconnected mode.

In general, we can say that we have proposed a discon-
nection, failure and partition detection service that can be a
foundation for a group communication systems. All the pro-
cesses that are reachable at one moment can become part of
the current view. One such membership algorithm has been
proposed by [2]. They build their membership service on
top of the set of the reachable processes. In the original al-
gorithm, they use only the failure detectors to build the set
reachable. We plan to reuse their membership algorithm
on top of the partition detectors defined above. A view
is formed for all the processes in the set reachable. The
membership algorithm presented in their work is a com-
prehensive one. But the only difference lies in the under-
lying model. In our model, we consider links that do not
recover after crashing while they consider links that can re-
cover even after they crash.

8. Conclusions and Perspectives

Mobile Computing is gaining more and more importance
with time. Need of the day is to target the problems which
are emerging due to mobility of the terminals. Disconnec-
tion is one of such problems, which springs up when a mo-
bile terminal moves out of the communication range. An-
other problem that may occur in both fixed and wireless net-
work is the problem of process and link crashes. These may
hamper the progress of a distributed application or may ren-
der it completely unavailable. Thus, there is a need to detect
and correct such unexpected behavior. There can be a sce-
nario where disconnection or failure of a process can render
two sets of components completely unreachable, called par-
titions. Group communication systems define a powerful
paradigm for distributed systems where processes take the
very same steps and exchange the same set of messages in
order to preserve the overall consistency of the application.
Processes are organized as multicast groups, called views.
Every process within a view shares the same set of mes-
sages, which is called view synchrony.

In this work, we have tried to distinguish the three: dis-
connection, failure and partition. Disconnection and fail-
ure may lead to the formation of autonomous network com-
ponents which can only communicate within their groups.
We have modified the already existing disconnection detec-
tor to work for partitionable networks with fair links. The

already existing heartbeat failure detector for partitionable
networks has been modified to discover the reachability pat-
terns of the underlying network. In the first partition detec-
tor, we try to discover the neighborhood topology. The idea
of neighborhood topology is to discover the processes that
are reachable from some neighbor. If that neighbor discon-
nects and fails, all the processes that were reachable only
through that neighbor are declared to have partitioned.

The second partition detector builds an overall view of
the system with the initial processes and links. Afterwards,
every new process and link is committed by all the pro-
cesses. In case of failure or disconnection, the reachabil-
ity between two processes is verified and if the disconnec-
tion and failure has affected reachability, the unreachable
processes are added to the list of partitioned processes. If
there are network partitions, every partition keeps track of
the changes visible to the partition and this information is
made global on merges. Since we cannot ascertain the sta-
tus of partitioned processes, we try to develop the heuristics
or opinions based on the application requirements. These
speculations can be optimistic and pessimistic. Certain
ideas for optimization of failure detection can be developed
based on the collected topology information.

Wireless group communication systems are becoming
need of the day with the increasing use of wireless applica-
tions. Users can share collaborative applications, they can
play multi-player games, and they keep data consistency
while they use wireless group communication systems. The
partition detectors defined in Section 5.1 and Section 5.2
can support any membership service that builds it views
consisting of the members of the reachable set.

Thus, we are giving here a framework for partition de-
tection which is a general one, that is the solution proposed
does not depend on network type or network topology. This
framework can be adapted for various application types. We
foresee that the disconnection, failure and partition detec-
tion can be based on one generic service, which can min-
imize the number of messages exchanged between various
processes. For mobile terminals, where the battery is al-
ready too small to support normal operation of few hours,
the computations and message complexity can be a huge
burden. Consequently, there is a need for optimizing algo-
rithms for their effectiveness.

References

[1] M. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat
Failure Detector for Quiescent Reliable Communication and
Consensus in Partitionable Networks. Theoretical Computer
Science, 220(1):3–30, June 1999.

[2] Ö. Babaoǧlu, R. Davoli, and A. Montresor. Group Com-
munication in Partitionable Systems: Specification and Al-
gorithms. IEEE Transactions on Software Engineering,
27(4):308–336, 2001.



[3] T. D. Chandra and S. Toueg. Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM, 43(2),
Mar. 1996.

[4] D. Conan, S. Chabridon, O. Villin, and G. Bernard. Dis-
connected Operations in Mobile Environments. In Proc. 2nd
IPDPS Workshop on Parallel and Distributed Computing Is-
sues in Wireless Networks and Mobile Computing, Ft. Laud-
erdale, Florida (USA), Apr. 2002.

[5] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, Apr. 1985.

[6] F. Gärtner. Fundamentals of Fault-Tolerant Distributed Com-
puting in Asynchronous Environments. ACM Computing Sur-
veys, 31(1):1–26, Mar. 1999.

[7] A. Montresor, R. Davoli, and Ö. Babaoǧlu. Middleware
for Dependable Network Services in Partitionable Distributed
Systems. Technical report, University of Bologna, 1999.

[8] L. Temal and D. Conan. Détections de défaillances, de con-
nectivité et de déconnexions. In Proc. 1st Francophone Con-
ference on Ubiquity and Mobility, pages 90–97, Nice, France,
June 2004. ACM Press. In French.


