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Abstract. With the evolution of wireless communications, mobile hand-
held devices such as personal digital assistants and mobile phones are
becoming an alternative to classical wired computing. However, mobile
computers suffer from several limitations such as their display size, CPU
speed, memory size, battery power, and wireless link bandwidth. In ad-
dition, service continuity in mobile environments raises the problem of
data availability during disconnections. In this paper, we present an ef-
ficient cache management for component-based services. Our ideas are
illustrated by designing and implementing a cache management service
for CORBA components conducted on the DOMINT platform. We pro-
pose deployment and replacement policies based on several meta-data of
application components. A novel aspect is the service-oriented approach.
A service is seen as a logical composition of components cooperating for
performing one functionality of the application. Dependencies between
services and between components are modelled in a hierarchical depen-
dency graph.

Key words: Mobile computing, disconnection, cache management, component-
based middleware.

1 Introduction

Since 1990, more and more progress has been done in computer networks and
machines used in distributed environments. Computer networks are becoming
increasingly heterogeneous ranging from fixed high-end machines to mobile low-
end machines like mobile phones and personal digital assistants (PDA). This
evolution has opened up new opportunities for mobile computing. For example,
a user with a mobile device can access various kinds of information at any time
and any place. However, mobile computing suffers from several limitations: the
mobile terminals are limited in terms of CPU speed, memory size, battery power
and wireless link bandwidth. Wireless connection is more expensive than wired
connection and it is characterised by frequent disconnections.

In such environments, disconnection is a normal event and should not be
considered as a failure freezing the application. We distinguish two kinds of dis-
connections: voluntary disconnections when the user decides to work on their



own for saving battery or communication costs, or when radio transmissions are
prohibited as aboard a plane, and involuntary disconnections due to physical
wireless communication breakdowns such as in an uncovered area or when the
user moves out of the reach of base stations. We also consider the case where the
communication is still possible but not at an optimal level, resulting from in-
termittent communication, low-bandwidth, high-latency, or expensive networks.
Furthermore, with the connectivity variation in space and in time, the mobile
terminal may be strongly connected (connected to Internet via a fast and re-
liable link), disconnected (no network connection at all to Internet), or weakly
connected (connected to Internet via a slow link) [20].

The adaptation to the characteristics of mobile environments can be per-
formed by the application (laissez-faire strategy), by the system (transparent
strategy), or by both the application and the system (collaboration strategy) [25].
As surveyed in [12], there is much work dealing with mobile information access
that demonstrates that the laissez-faire and the transparent approaches are not
adequate. Our collaboration approach is then twofold. Firstly, we use caching to
obtain work continuity while being disconnected. Secondly, the application must
be built in such a way that it specifies the behaviour while being disconnected.
This is achieved by using some meta-data to specify application’s components
and functionalities: which components or functionalities can be cached and which
ones must be present for the disconnected mode.

These ideas are illustrated by designing and implementing a cache manager
service for CORBA components conducted on DOMINT [6]. Furthermore, unlike
file caching where no interactions between files occur, we maintain in memory
components that are connected with other local components. Thus, the solution
must take components’ dependencies into account. A novel aspect of this paper is
the use of a service-oriented approach. A service is seen as a logical composition
of components cooperating for performing one functionality of the application.
Dependencies between services and between components are modelled in a hier-
archical dependency graph. The DOMINT platform deal with the reconciliation
(also called data synchronisation) of discomponents after the reconnection ; since
the paper doesn’t present that issue, please refer to [6].

The remainder of this paper is organised as follows. Section 2 gives our mo-
tivations for disconnection management. Section 3 gives a classification of ap-
plication’s entities according to some criteria. The methodology for determining
and manipulating the dependency graph is described in Section 4. In Section 5,
we describe the cache deployment strategy and the cache replacement strategy.
The implementation of the cache manager and first experimental results are
presented in Section 6. Section 7 compares our approach with related work, and
finally, Section 8 summaries the paper, presents conclusions, and discusses future
research issues.



2 Motivations and objectives

Traditional programming environments are mainly connection-oriented program-
ming environments in which a client must maintain a connection to a server. In
mobile computing, the challenge is to maintain this logical connection between
a client and its servers using the concept of disconnected operation [14]. A dis-
connected operation allows clients to use services when the network connection
between the mobile client and the server is unavailable, expensive, or slow. Hence,
mobile terminals must cache some data or even some code from remote servers
so that clients in mobile terminals use these data while being weakly connected
or disconnected.

Three important issues exist in designing an effective cache management.
First of all, the deployment strategy determines what to cache, when and for
how long. Secondly, the replacement strategy computes which entity should be
deleted from the cache when the cache does not have enough free space to add
a newly-required entity. Finally, the consistency strategy maintains data consis-
tency between data in the cache and data in the original server. In this paper,
we do not address consistency issues. In a mobile application, the distribution
of application entities can be done in fixed terminals [26,21,13], or in fixed and
mobile terminals [30]. In the first case, the client’s GUI in the mobile terminal
uses the server parts installed in fixed hosts. In the second case, a mobile ter-
minal can be a client for servers and can be a server for other hosts (mobile or
fixed). This last case was rarely studied in mobile environments because of the
limited capacity of mobile terminals and because of the difficulty in implement-
ing these applications with traditional object-oriented, database-oriented, and
file-oriented programming paradigm.

The development of distributed applications converges more and more to-
wards the use of component-oriented middleware such as EJB [7], CCM [23]
and Net [19] that better addresses the application complexity by separating
functional and extra-functional aspects [29]. Unfortunately, these middleware
are inadequate for mobile environments where the resources are unstable. In
addition, components are seen as independent pieces of software that can be
assembled to realise complex software. These components cooperate with each
other to accomplish system functionalities in a distributed manner. Thus, ser-
vice and component dependencies must be managed and made implicitly during
execution.

3 Application’s service and profile

In this Section, we define the concept of service of mobile distributed applications
and propose an application’s profile for service continuity.

A distributed application can be viewed as a set of components. They use
and provide functionalities that are accessed through connections between com-
ponents. The functionality of a multi-component application is accessed through
a component that itself can use some parts of the functionalities offered by oth-
ers. This interaction fulfils a function that may be described as the provision of



a service. A set of components that interact with each others to achieve a func-
tionality is defined as a logical composite component, that is, according to [3], a
service is defined as “a contractually defined behaviour that can be implemented
and provided by any component for use by any component, based solely on the
contract”. The application as a whole may be regarded as a set of services which
are accessed by users through a GUI acting as a “Facade” (design pattern) [9].
Thus, we define two types of interactions: intra-service (between components in
the same service) and inter-service (between services). For example, an Inter-
net travelling agency application may be regarded as a set of services (booking,
getting prices, canceling... reservations) and each service is realised by collabo-
rations between several components. For example, the service “booking a seat in
plane” uses a component to get available seats and another one to obtain prices.

In [16], we have introduced a meta-model for designing applications that deal
with disconnections. This meta-model is based on meta-data that define an ap-
plication profile. The disconnectability meta-data indicate whether a component
residing on a fixed server can have a proxy component on a mobile terminal that
we call a discomponent. If this is the case, the original component is said to be
disconnectable. A discomponent achieves the same functionalities as the com-
ponent in the fixed server, but is specifically built to cope with disconnection
and weak connectivity. The design of a discomponent from the corresponding
remote component is an open issue not treated in this paper. We are currently
devising and experimenting design patterns and idioms for that construction.
Software architects set the disconnectability meta-data since they have the best
knowledge of the application’s semantics. Furthermore, disconnectability implies
design constraints that the developers must respect. For example, for security
reasons, one may decide to deploy some components on dedicated secure hosts
and to prevent clients from loading them on mobile hosts, thus not allowing the
disconnectability of these components.

Next, the necessity meta-data indicate whether a disconnected component
must be present on the user terminal. Clearly, the necessity applies only on
disconnectable components. The necessity is specified both by application’s
developers and end-users. The former stake-holders provide a first classifica-
tion in developer-necessary and developer-unnecessary components, and the lat-
ter stake-holders can overload a developer-unnecessary component to be user-
necessary at runtime.

Finally, the priority meta-data indicate the priority between unnecessary
components and between user-necessary components. The priority is needed in
order to select cached components when the cache size of the mobile terminal is
too small.

By analogy, we apply these meta-data to the concept of service. Thus, we
define a disconnectable service as being a service which can be performed in
the mobile terminal during disconnection and which is the logical composition
of several disconnectable components. In addition, we define a necessary service
as a service that contains at least one necessary component. Also by analogy,
services are given priorities.



4 Dependency graph

As just described, an application as a whole may be regarded as a set of services.
In the software architecture, these services are identified in use cases diagrams.
Architects specify which use cases are disconnectable and necessary during a
disconnection, and their corresponding priority. This Section first presents the
design of the dependency graph and then the propagation of the meta-data
within this dependency graph.

4.1 Design of dependency graph

Our collaborative approach for dealing with disconnections is expressed in
a development process called Mobile Application Development Approach
(MADA) [17] that is model-driven, architecture-centric, and component-based,
and which follows the Model-Driven Approach (MDA) of the Object Manage-
ment Group (OMG). MADA is based on the “Fagade” design pattern [9] and the
“441” view model [18]. The “Facade” design pattern allows to simplify the ac-
cess to a related set of services by providing a single entry point to call services,
thus, reducing the number of components presented to the user. The “4+1” view
model makes possible the organisation of the software architecture in multiple
concurrent views (logical, process, physical, development, and use cases). Each
one addresses separately the concerns of the various stake-holders of the software
architecture. In addition, it helps in separating functional and extra-functional
aspects.

Software architects specify which services are disconnectable in the use cases
diagram, and for each disconnectable service, an extended use case (using the
extend dependency) is defined replacing the original use case during disconnec-
tion. Then, they tag use cases with the necessity meta-data and give a priority to
each service. Finally, for each disconnectable service, they provide the necessity
and the priority for components that collaborate to perform this service by using
classes and collaborations diagrams.

Figure 1 depicts a simplified use cases diagram for an Internet travelling
agency application that we have used as an example application test-bed. Fig-
ure 1-a depicts services offered by the application and Figure 1-b describes the
same application with disconnection management. The service “Buy a ticket” is
set non disconnectable for security reasons, whereas the other services are dis-
connectable. In addition, the service “Book a ticket” is necessary to ensure the
optimal service continuity in disconnected mode. The service “Book a ticket”
uses the service “Prices” that can also be used directly by the user. Thus, the
use of the service “Book a ticket” while being disconnected requires the presence
of the service “Prices” in the cache. Solving this issue requires the determina-
tion and computation of dependencies between services. These dependencies are
presented within a directed graph where nodes denote services and edges denote
the include dependency which is annotated with the necessity meta-data.

Service availability in disconnected mode implies the presence of some com-
ponents which are used for achieving this service. Thus, by analogy, component
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Fig. 1. (a) Use cases diagram (b) Use cases diagram with disconnectable use cases.

dependencies are also drawn within the dependency graph where nodes denote
components and edges denote dependencies between components. Figure 2 de-
picts a simplified dependency graph for our example application. The “Facade”
component represents the component accessed by the GUI. Thus, the depen-
dency graph comprises three types of interactions: between the “Facade” and
services, between the services and components, and between components. The
last two types present the entry point to perform service functionality. In addi-
tion, it is clear that components can be used by different services (e.g., “Price-
Provider” component in Figure 2). The dependency graph is used by the deploy-
ment strategy (cf. Section 5.1) and the replacement strategy (cf. Section 5.2).
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Fig. 2. Application’s dependency graph.



4.2 Meta-data propagation

As described in Section 3, the end-user can overload some meta-data. These
overloads lead to a propagation of the meta-data intra- and inter-services. In this
paper, we only detail the propagation of the necessity. For the sake of clarity, in a
dependency relation, we use the prefix “pre-” to express the starting entity (pre-
component and pre-service) and the prefix “post-” to express the target entity
(post-component and post-service). We describe the meta-data propagation from
the Fagade component (the root of the graph) to components at the leafs of the
graph.

As described in Section 4.1, end-users are only aware of services. In addition,
the necessity of a service corresponds to the necessity of the edge between the
“Facade” component and this service. Let S be the set of services, F' the “Fagade”
component, £ the set of edges, necLFC(l) a predicate evaluating to true if edge
I between F' and s is necessary, and necs(s) a predicate evaluating to true if
service s is necessary. The previous statement is written as follows:

VseS:(3lp—s € LAnecLFS(lp—s)) = necs(s) (1)

If the edge between two services is tagged as being necessary and the pre-
service is also necessary, then the post-service becomes necessary. Let necLS(l)
be a predicate evaluating to true if edge [ is necessary between services. The
previous statement is written as follows:

Vs1, 82 € 8, Vs, s, € L:necLS(ls,—s,) Anecs(s1) = necs(s2) (2)

In addition, the necessity will be propagated from services to components.
If the service is necessary and the edge between a service and a component is
tagged as being necessary, then the component becomes necessary. Let C be the
set of components, necLSC(1) a predicate evaluating to true if edge | between
a service and a component is necessary, and necc(c,s) a predicate evaluating to
true if component c is necessary for service s. The previous statement is written
as follows:

VseS,VeelC: (Ils—c € L:necLSC(ls— ) N necs(s)) = necc(e,s) (3)

By analogy with services, let necLC(l) be the predicate evaluating to true
if edge [ between two components is necessary for service s. The necessity of
the pre-component and the necessity of the link between the two components
imply the necessity of the post-component for service s. The previous statement
is written as follows:

Vs € §,Ver, 0 € C, Ve, e, € L:mecLC(le,——c,) N necc(cy,s) = necc(ca, s)

(4)
Finally, it is clear that a component is necessary if and only if it is necessary
in at least one necessary service. The previous statement is written as follows:

VeeC:(3s €S : necc(c,s) N necs(s)) < necc(c) (5)



In Figure 2, if the end-user tags the link between the “Facade” component
and the service “Book a ticket” as necessary, the necessity will be propagated
to the service “Book a ticket” by (1), and then the necessity will be propagated
to the component “AwailableSeat” by (3). Finally, the necessity will also be
propagated to the component “BookedSeat” by (4).

5 Cache manager

We describe the deployment strategy in Section 5.1 and the replacement strategy
in Section 5.2. Both strategies are based on the meta-data introduced in Section 3
and on the application dependency graph described in Section 4.

5.1 Deployment strategy

We define three complementary deployment times. At launching-time, developer-
necessary services are all deployed and cached. We assume that the cache size
is higher than the size of all the developer-necessary services and the appli-
cation starts only if the loading of developer-necessary services is successfully
performed. User-necessary services are then deployed depending on their prior-
ity. Deploying a service corresponds to deploying the necessary components of
this service. However, before creating a discomponent into the cache, the cache
manager checks whether a discomponent has already been deployed for other
services since the cache is shared between the applications running on the mo-
bile terminal. One potential drawback of this strategy is that the end-user must
wait till all developer-necessary discomponents of developer-necessary services
are deployed before beginning to work.

During execution, the end-user can specify which services should be deployed
locally for disconnection management. This is end-user-demand deployment in
which the end-user is presented with a list of services offered by the application
and their meta-data (disconnectability, necessity, and priority). The end-user
can use this deployment type for example before a voluntary disconnection.
As described in Section 4.2, the change of service necessity (from unnecessary
to user-necessary) can impact the necessity of other services. Thus, the cache
manager updates the dependency graph and deploys the new user-necessary
services.

At invocation-time, when a client on the mobile terminal requests a user-
necessary service or an unnecessary service, the cache manager checks whether
the service is already deployed in the cache. If not, the service is deployed and
may replace some services already in the cache (following the replacement strat-
egy). This deployment type is also used when a discomponent in the cache re-
quests a component not cached, yet. In both cases, the cache manager also
deploys services or components needed according to the dependency graph.



5.2 Replacement strategy

When a new entity (service or component) should be placed in the cache, if
the cache exceeds its capacity, some entities should be ejected in order to make
some room for the newcomers. The replacement strategy plays the key role of
determining which entities to eject. We define two cases in the replacement
strategy.

In the first case, called end-user-demand replacement, the end-user can spec-
ify which services should be evicted from the cache when there is not enough
memory size. This is realised by presenting the user with a list of currently
cached services. Since developer-necessary services are mandatory, the list is
only made of user-necessary services or unnecessary services. To evict a service
from the cache, the replacement strategy executes Algorithm 1. The removal of
the service fails if this service is developer-necessary (line 4). From line 8, a dis-
component is evicted from the cache if it is not in conflict! with the component
in the fixed server, and if it is not used by other services in the cache. In addition,
to avoid having orphan components, components in conflict will be evicted once
reconciled.

Algorithm 1: Boolean serviceRemoval(Service sr)
boolean necessary «— getServiceNecessity(sr) {true if the service is necessary}

1

2 string necessityKind «— getNecessityKind(sr) {“User” or “developer”}
3 DisconnectedComponent dc

4 if mecessary and necessityKind=“developer” then

5 return false {Exit without removing the service}
6 ComponentSet components — getComponentSet(sr)

7 for all dc € components

s if (dc.updated and —dc.shared) then removeComponent(dc)

o removeService(sr)

10 return true {Exit with success after suppression of the service}

In the second case, called periodic replacement, the replacement process is
executed periodically in order to try keeping a part of the cache free for critical
use to anticipate and thus accelerate the deployment of new services or compo-
nents. The size of the critical part of the cache is configurable by the end-user.
Algorithm 2 gives the functioning of the periodic replacement. The cache man-
ager obtains the set of cached services, the size of the free memory of the cache
and the size of the critical memory of the cache. While the free memory size is
lower than the critical memory size, the cache manager executes for each service
Algorithm 1 to release some memory space. In addition, the removal of services
is performed according to a replacement policy (line 2).

! In conflict means that operations performed locally have not yet been executed on
the remote component.



Algorithm 2: Periodic_strategy()

1 Collection services <« getServices() {All services loaded in the cache}
2 orderServices(policy, services) {Order according to a policy}
3 Service sr « services.getFirst() {Obtain the first service}
4+ while (getFreeCacheSize() < getCriticalSize())

5 serviceRemoval(sr) {Apply Algorithm 1}
6  sr « services.getNext() {Obtain the next service}
7 if sr = null then break

As a new replacement policy, we propose the LEUPP (Least Frequently Used
with Periodicity and Priority) policy which is an improvement of the basic LFU
(Least Frequently Used) policy. When a service is to be removed from the cache,
the one with the lowest frequency is selected. If there are several services whose
frequency is the lowest, one of them is selected according to their priority. To
avoid having services with a larger frequency due to scattered bursts of accesses,
LFUPP periodically resets to 0 the frequency.

6 Implementation and performance measurements

We present the implementation of the cache manager in Section 6.1 and some
performance measurements in Section 6.2 to evaluate the efficiency of our propo-
sition.

6.1 Cache manager service

The cache manager is a CORBA service and is integrated in the component-
oriented middleware OpenCCM [22] conducted on DOMINT [6]. DOMINT is a
platform which adapts distributed component-based applications so that they
ensure service continuity even while being weakly connected or disconnected.
In addition, the cache manager service is modelled and implemented using the
Fractal component model [22].

Figure 3-a describes the CacheManager component architecture. The
cache manager component is a composite of four Fractal components.
The DisComponentFactory component represents the entry point of the
CacheManager component. It coordinates the deployment and the management
of the services and the their discomponents. The DisComponentCreator com-
ponent allows creating discomponents. In the context of CORBA, it uses the
OpenCCM deployment tool. The DiscEntryFactory component allows creating
a cache entry per discomponent. An entry is composed of an object that encap-
sulates the CORBA reference of the remote component, the CORBA reference
of the discomponent, and the meta-data used by the replacement strategy. The
PerseusCacheManager component, from the ObjectWeb Perseus project [22],
gathers existing components that we have reused in order to realise our re-
placement strategy. The structure of the PerseusCacheManager is depicted in



Figure 3-b. The DiscReplacementManager component extends the (abstract)
ReplacementManager component of Perseus in order to integrate a new replace-
ment policy.
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Fig. 3. (a) Cache manager component (b) Perseus component.

The dependency graph presented in Section 4 is implemented using GXL
(Graph eXchange Language) [11], which is an XML based notation. Our main
motivation for using GXL is the presence of a flexible and extensible mecha-
nism to define a notation for the description of services, components, and their
interactions. In addition, GXL allows modelling hierarchical graphs. We have ex-
tended the GXL implementation which is freely available to take our meta-data
into account in the parsing process.

6.2 Performance measurements

We have performed some experiments in order to evaluate the efficiency of our
propositions. We focus firstly on the amount of time required to extract meta-
data of services and components from the dependency graph, and then evaluate
how well our replacement strategy performs.

Figure 4 shows the average time to extract the meta-data from the depen-
dency graph. This test was run on GNU/Linux RedHat 9.0 powered by a 933
MHz Pentium 3 with 528Mo RAM. Each test was executed 1000 times in order
to obtain meaningful averages. A garbage collection occurred before each execu-
tion in order to have no interference with previous operations. For 1 service and
20 components, the time to extract the meta-data from the dependency graph
is 1.32ms, and for 20 services and 381 components, it takes 20.2ms. The results
show that the time to extract the meta-data remains very low even for extreme
situations with tenths of services and hundreds of components. Of course, these
extreme situations are unreasonable for mobile terminals. In addition, the num-
ber of services does not have an influence over the execution time, and with a
high number of components, the overhead increases slightly because of swapping
(which does not exist right now in most of the mobile terminals).
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Fig. 4. Deployment time

In order to evaluate how well our replacement strategy performs, we use two
performance metrics: Hit Rate (HR) and Byte Hit Rate (BHR). HR is the ratio
between the number of requests satisfied by the cache and the total number of
requests. BHR represents the percentage of all the data size that is used from
the cache rather than from the original server. In addition, we calculate HR
and BHR for two cases: the granularity of the replacement strategy is either the
component or the service.

We have conducted the experiments using a simple application with 15 ser-
vices (5 of them are necessary) and 50 components on a laptop PC (Intel 700
MHz Pentium 3, 128 M RAM) running Microsoft Windows2000. In addition, we
have implemented a simulator that artificially generates access traces. It takes
into account the number of components, the number of services, the size of
the components, the necessity, the priority, and the number of requests. Each
test was run 10000 times, the range of component’s (resp. service’s) sizes is 10—
160Kb (resp. 50-160Kb) with an average component’s (resp. service’s) size of
45Kb (resp. 80Kb). The size of a service corresponds to the sum of the size
of necessary components of this service. In addition, for the component access
traces, we have used a trace with 80% of requests referencing necessary com-
ponents, 10% of requests referencing components with high priority (necessary
or unnecessary), and 10% of random traces. For the services, we have used the
same percentages as for the component access traces.

Our experiments consist to evaluate the efficiency of Algorithm 1 and Al-

gorithm 2 studied in Section 5.2. We examine five replacement policies: two
“traditional” policies (Least Frequently Used and Least Recently Used), two



replacement policies investigated in the WWW (Greedy Dual Size with Fre-
quency [4] and SIZE [31]), and LFUPP described is Section 5.2. Figure 5 and
Figure 6 compare the average hit rate and the byte hit rate achieved by each
policy using respectively the component and the service as the access unit, and
for cache sizes ranging from 60Kb to 1020Kb.

Hit Rate (%)
Byte Hit Rate (%)

0 100 200 300 400 500 600 700 800 900 1000 1100 0 100 200 300 400 500 600 700 800 900 1000 1100
ache size (kb)

c Cache size (kb)
(a) Hit Rate (b) Byte Hit Rate

Fig. 5. Analysis of policies with the component as the access unit.

According to Figure 5, LFUPP is the best choice for the small cache sizes
(60Kb—500KDb). It outperforms all other policies by at least 7% for the hit rate,
and between 2% and 12% for the byte hit rate. This success can be attributed
to the following factors. Clearly, we assume that a well-designed application
may contain a reasonable percentage of necessary components access traces (we
consider 80%), therefore favouring LFUPP. Similarly, the other meta-data con-
sidered, namely the priority, help in making best choices. For large cache sizes,
all the policies perform roughly the same with a small advantage for GDSF.
However, although SIZE treats more favourably small components, our results
show that this policy has the worst byte hit rate despite the inclusion of both
large and small components in the simulated traces. LRU achieves the lowest hit
rate since it does not consider enough information in the replacement process,
in particular, the component priority.

Figure 6 indicates that using the service as the access unit, LFUPP is superior
to other policies for small cache sizes (60Kb-340Kb). However, for large cache
sizes, LF'UPP is roughly the worst. Finally, the results obtained with the service
as the access unit converge rapidly compared to the results obtained using the
component as the access unit. This is because a service request is only performed
when all necessary components of this service are in the cache. In addition, in
practice, once cached, the service will often be accessed in burst. Therefore, using
the service as the access unit is more efficient than the component for devices
with small memory size.
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Fig. 6. Analysis of policies with the service as the access unit.

7 Discussion and related work

Caching is a fundamental paradigm for ensuring service continuity while being
disconnected. This issue is studied in different fields such as file system, WWW,
database, object-oriented system, and component-oriented system. Caching has
also been highly investigated in operating system virtual memory management.
Various page replacement algorithms have been proposed including NRU (Not
Recently Used), FIFO (First In, First Out), LRU (Least Recently Used), and
LFU (Least Frequently Used) algorithms. These and other algorithms are sur-
veyed in [28].

In the file system field, Coda [27] defines the notion of implicit and explicit
data which are used as an application profile to choose the files to prefetch and
replace. The implicit data are composed of the client history and the explicit
data take the form of a client database called HDB (Hoard Data Base). The
cache manager called Venus can be in three modes: hoarding, emulation, and
reintegration. In the hoarding mode (strongly connected), Coda anticipates dis-
connections by locally storing files. It deploys the files in the HDB according to
a priority given by the user. The other files are loaded after a cache miss and are
managed using a LRU replacement policy. However, an application may not be
usable during disconnections if the end-user has made bad choices when filling
the HDB. In our approach, we have added the developers’ choices since they have
the best knowledge of the application semantics and functioning. Using a cache
system like Coda, Seer [10] adds predictive file hoarding to automatically detect
which files to load. The granularity of the caching is a project, that is a group
of closely related files. It uses the notion of semantics distance to quantify the
relationship between files. Seer observes the end-user behaviour, calculates the
distances, and automatically generates the corresponding projects and uses these
projects to prepare the cache for disconnection. Even though the project defines
a logical dependency between files, Seer does not define relationships between
projects. In Amigos NFS layer [1], the cache manager deploys files on the mo-



bile terminal using a user-defined profile. This profile orders files and directories
thanks to a user-assigned priority like in Coda. Periodically, Amigos revalidates
the cache contents, purges dirty files, and updates the list of files to be deployed
according to the user profile. In our work, the end-user collaboration for the dis-
connection management could be envisioned to be performed dynamically, and
priority meta-data could be refined using collected statistics like in Seer.

In the WWW field, caching and prefetching are used for improving the per-
formance of Internet accesses. SIZE [31] replaces the largest document by a
bunch of small ones. However, some documents can be brought into the cache
and never requested again. GDSF [4] assigns for each page P a key K(P) and
when a replacement is needed, the page with the lowest key value is replaced.
The key is calculated according to the function K(P) = L + F(P) x C(P)/S(P)
where £ is an aging factor that starts at 0 and is updated to the key value for
the last replaced document, F(P) is the access count of page P, C(P) is the cost
to bring page P into the cache and S(P) is the page size. However, SIZE and
GDSF policies do not take into account users’ preferences nor developers’ ones.

In the database field, Bayou [30] provides a framework for highly-available
mobile databases in the context of collaborative applications. Bayou uses a whole
database as the caching granularity. Thus, each mobile terminal holds full repli-
cas of databases. Bayou takes application’s semantics into account to detect
and resolve conflicts using a peer-to-peer anti-entropy algorithm [24]. However,
mobile terminals that cannot hold the full replica of a database cannot offer
service continuity during disconnections. [8] describes a client caching mecha-
nism for a data-shipping database in which clients and servers interact using
fixed-length physical units of data such as pages (four or eight Kbytes). Client
caching mechanism is based on a dynamic replication mechanism in which page
copies are created and destroyed based on the runtime demands of clients. This
mechanism does not anticipate disconnections and does not take into account
application’s semantic.

In the object field, Rover [13] introduces two concepts: Relocatable Dynamic
Objects (RDO) and Queued Remote Procedure Call (QRPC). Rover imports
objects into the cache using RDO at the first invocation without taking appli-
cation’s semantics into account, and programmers must design and code their
applications in terms of RDO. CASCADE [5] is a generic caching service for
CORBA objects. Cached copies of each object are organised into a hierarchy.
Clients always use objects from the nearest server. [2] describes two replacements
policies used in CASCADE: H-BASED and LFU-H-BASED. In H-BASED, for
each object in the hierarchy, the replacement key is the number of direct de-
scendents that were evacuated from the cache. When the cache is full, the cache
manager will evict the object with the smallest key. In addition to H-BASED,
LFU-H-BASED associates a priority for each object in the cache. When an ob-
ject must be removed from the cache, the one with the lowest priority is chosen.
If there are several objects with the lowest priority, the H-BASED policy is
used. However, CASCADE is not designed for disconnection management but
to improve response time.



In the component field, ACHILLES [15] is a system for on-demand deliv-
ery of software from stationary servers to mobile clients. The granularity used
in deployment and replacement strategies is a software element (whole appli-
cation or single component). Users have the choice between two deployment
policies: automatic and manual. In both cases, only the local copies are used. In
the manual mode, the user specifies which software elements should be in the
cache permanently and which ones can be removed if necessary. In the automatic
mode, software elements are deployed locally at first use if there is no copy. The
automatic policy uses a Minimal Cost strategy. The cost is used to determine
which software element should be removed. It is a function of the cost to reload
a software element once it has been removed and the importance of the software
element. The importance of the software element is the number of software el-
ements that depends on the former. Similarly to our work, ACHILLES uses a
resource dependency graph to calculate the importance of software elements. As
far as cache management for disconnection handling is concerned, ACHILLES
does not handle involuntary disconnections and the Minimal Cost policy does
not take into account the priority of software element according to the end-user’s
choice.

8 Conclusion

The purpose of this work is to investigate the problem of disconnection in mo-
bile environments and to provide a platform for keeping working while being
disconnected. A novel aspect of this paper is the service-oriented approach for
the cache management. A service is seen as a logical composition of several
components which cooperate to perform a functionality of the application. We
have proposed the use of meta-data to build an application profile for managing
the cache. The disconnectability meta-data indicate whether an entity can have
a proxy on the mobile terminal, the necessity meta-data specifies whether the
presence of the proxy on the mobile terminal is mandatory for the execution of
the application during a disconnection, and the priority meta-data is used to
select cached entities when the cache size is too small.

We have proposed an approach to analyse and manage dependencies in which
intra-service and inter-services relationships are modelled in a dependency graph.
The structure of the graph is static whereas the annotations of nodes and edges is
dynamic. Based on the dependency graph and the application’s profile, we have
designed and implemented a cache manager service. We have defined the deploy-
ment strategy and a generic replacement strategy depending on the necessity.
We have investigated several replacement policies to evaluate the replacement
strategy. Our performance results show that the LFUPP (Least Frequently Used
with Periodicity and Priority) policy described in this paper performs better
when the cache size is small, which is the case for mobile terminal, and GDSF
(Greedy Dual Size with Frequency) [4] provides a somewhat better hit rate and
byte hit rate when the cache size is large. In addition, using the service as the
replacement unit is more efficient than the component.



As future work, we plan to extend our approach in several points. First of
all, our work currently assumes that the cache size is large enough to deploy
developer-necessary services. We are currently investigating this limitation. Ac-
cording to the results studied in Section 6, we believe that taking into account
the priority meta-data in the cost function of GDSF can achieve more exciting
results in the case of small cache size. In addition, factors like bandwidth, con-
nection establishing time between client and server, and deployment time can be
considered in the cost function. The dependency graph is built once during the
application development process. We are designing solutions to make it evolving
depending on current resources availability. Finally, end-user collaboration for
the disconnection management can be envisioned to be performed dynamically
using a predictive approach like in Seer [10].
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