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Abstract

A well-known method to provide fault tolerance in distributed systems composed of networks of workstations
is rollback-recovery. One of the main problems of rollback-recovery is the handling of processes which execute two
contradictory types of actions : undeterministic actions and frequent communications between the processes of the
application and processes not belonging to it. In this paper, we propose a new solution inspired from the concept
of message delivery semantics. There are four types of message deliveries : ezactly once, at least once, at most once
and no constraint. In the solution, the programmer gathers undeterministic actions into a few processes and isolates
these processes from the rest of the application by using message delivery semantics. Being isolated, the processes
that execute undeterministic actions can send messages to the outside world without incurring a global checkpointing.
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1 Introduction

Our computation model of a distributed application consists in several processes running in parallel on different ma-
chines, with communication links between them. Several methods can be used to provide fault tolerance in distributed
systems for this model. A well-known one is rollback-recovery [Chan85, Stro85, Koo87, Lai87, Sist89, John90, Elno92,
Sens94, Cona96]. This method is becoming increasingly popular because it is economic and transparent to the user. In
this solution, when a machine failure is detected, a replacement machine is found in the network. Practically, a check-
pointing algorithm registers from time to time the state of the distributed application, a message logging algorithm
saves inter-process messages in stable memory during the failure-free execution and a recovery algorithm restarts the
distributed application from a previous state in case of a machine failure.

Rollback recovery is often used for long-lived and calculus-intensive distributed applications. But, it doesn’t already
support distributed applications that simultaneously interact with their environment - e.g., by printing intermediary
results to or loading new data from external entities! - and execute undeterministic actions - e.g, getting the current
time or setting a timer?. In fact, undeterminism prevents processes from using message logging. Hence, to recover the
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1Tn the rest of the paper, these external entities are called the outside world of the distributed application.

2For the sake of clarity, we exclude from the set of undeterministic actions the receipts of a message from any process. Distributed
applications that do not contain processes that execute undeterministic actions are said to be piece-wise deterministic [Stro85]. Distributed
applications that do contain processes that execute undeterministic actions are said to be undeterministic.
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a process sends a message to the outside world, the global state of the distributed application must be consistent.
Therefore, undeterministic distributed applications must take a consistent global checkpoint each time some of their
undeterministic processes send a message to their outside world.

In this paper, we propose a new solution inspired from the concept of message delivery semantics [Brze95] to
support the fault tolerance of long-lived calculus-intensive undeterministic distributed applications that frequently
interact with their outside world. There are four different types of deliveries : exactly once, at least once, at most once
and no constraint . In the solution, the programmer gathers undeterministic actions into some processes and isolates
these processes from the rest of the application by using message delivery semantics. Clearly, we ask the programmer
to know in advance which actions are undeterministic and to operate minor modifications of his (her) source code.

This paper is organized as follows. Section 2 presents a short overview of the initial algorithms. Section 3 details
the treatment of inter-process message delivery semantics and the benefits obtained. Section 4 shows how we take
advantage of these benefits to support undeterministic actions. Section 5 compares the proposed solution with related
works and concludes.

2 Short overview of the initial algorithms

First, we give a short overview of our initial checkpointing, message logging and rollback-recovery algorithms. Be-
fore describing the algorithms, we explain the organization of processes executing on nodes of the same network in
distributed recovery units. The reader can find an exhaustive description of the algorithms in [Cona96].

Distributed applications may involve several networks of workstations. Processes executing on nodes belonging to
the same network are gathered into an entity called a distributed recovery unit (DRU) [Vaid93]. Each DRU is managed
by a dedicated process named the Fault Tolerance Manager (FTM). The algorithms are designed so that no inter-DRU
protocol is needed : each DRU is completely isolated from the others - i.e., the FTM acts as a pessimistic gateway

[Lowr91].

Checkpointing can be either consistent or independent. The choice is left to the user or the system administrator. If
checkpointing must be consistent, the algorithm is similar to the ones described in [Chan85] and [Lai87] : a coordinator
(the FTM) reliably broadcasts a checkpoint order and processes being checkpointing mark the messages they send.
The third phase of the algorithm transforms the tentative checkpoints into permanent ones [Koo87]. If checkpointing
mustn’t be consistent, the algorithm is similar to the one described in [Stro88]. The differences are :

e Processes being checkpointing still mark the messages they send.
e When the processes receive marked messages they don’t checkpoint their state.

o After their state checkpointing, the processes wait a given time period in order to discover if other processes of
the same DRU are concurrently checkpointing. This knowledge is used in the computation of needed messages -
i.e., messages that must be saved in stable memory for recovery [Stro88].

Message logging can be either pessimistic or optimistic. The choice is left to the user or the system administrator.
The algorithm is similar to the one described in [John90] : regularly, each process P; transmits to the FTM its history
and its current dependency vector. The FTM keeps in volatile memory these two sets. Regularly, the FTM saves in
stable memory the histories and the dependency vectors, one vector per process (the last one received). The differences
from Johnson’s and Zwaenepoel’s algorithm are :

e The execution machine of the coordinator (the FTM) doesn’t need to be reliable (replicated).

e The dependency vectors help in speeding up the computation of the maximum recoverable global state and the
commit of the messages sent to the outside world. Moreover, the global state computation is only done when
necessary - i.e., when rollbacking or sending a message to the outside world.
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it alerts the FTM. The FTM thus executes four phases : the detection of faulty processes (crashed or orphan), the
reconfiguration (creation of the new incarnations of the faulty processes), the retrieving of information for the re-
execution, and finally, the starting of the re-execution. During the re-execution, every receive action is re-played, but
messages are not re-sent if receiving processes weren’t faulty.

3 Treatment of inter-process message delivery semantics

We now show how message delivery semantics influences the initial algorithms.

Each message is tagged by the application with a delivery semantics. Delivery semantics relates to the definitions
of orphan and missing messages as follows [Brze95]. A message is orphan if the receive action occurs during the
execution, but not the corresponding send action. A message is missing if the send action occurs during the execution,
but not the corresponding receive action. A recovery line R is consistent with respect to a message m if and only if :

e m is neither orphan nor missing and tagged ezactly once, or,
e m is orphan and tagged at least once, or,

e m is missing and tagged atf most once, or,

e m is either orphan or missing and tagged no constraint.

From the last property, delivery semantics relates to rollback-recovery as follows :

o We have to make sure that ezactly once messages are neither orphan nor missing.

We have to make sure that at least once messages are not missing. In other words, at least once messages can be
orphan.

o We have to make sure that at most once messages are not orphan. In other words, at most once messages can
be missing.

e no constraint messages can be orphan and missing.

These rules modify the definition of needed messages. Because at most once and no constraint messages can be
missing, they are no longer needed for the recovery. Their content is not saved in stable memory when their sender
checkpoints.

When a process P; sends or receives a message, P; increments the integer counter of its logical clock. The goal is
to detect orphan and missing messages. Since no constraint messages can be orphan or missing, P; doesn’t increment
any more its logical clock when sending them.

When a process P; sends a message m, P; keeps a copy of m in its volatile memory. Af most once and no constraint
messages can be missing, thus their content isn’t saved any more in the sender’s volatile memory.

When a process P; receives a message, P; keeps this new dependency in its dependency vector. This recording
doesn’t exist any more for at least once and no constraint messages because P; isn’t orphan when receiving them.

At least once and no constraint messages can be received twice or more. Therefore, such messages don’t need to
be committed any more before being sent to the outside world.

Finally, during the re-execution, processes do not need to re-play sending and receiving actions of af most once
and no constraint messages.
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In this section, we first explain how we support undeterministic actions and then show which benefits can be obtained
by using message delivery semantics.

When they start, processes register the FTM and indicate whether they will execute undeterministic actions or
not. By definition, undeterministic actions can’t be re-played. Therefore, before an undeterministic process sends
a message to the outside world, the process must checkpoint and the message must be committed. Moreover, if a
process causally depends on undeterministic processes by means of messages sent by these processes since their last
checkpoint, it must checkpoint too. This is because such messages might not be re-played. The consequence is that
undeterministic processes must cause a checkpoint that must be global and consistent each time they send messages
to the outside world. Thus, it is very expensive to support undeterministic processes that communicate with the
environment of the application. Moreover, 1t is not necessary to log messages sent or received by undeterministic
processes and the rollback-recovery algorithm doesn’t require any modification.

Now, we add the treatment of message delivery semantics to limit the message propagation of the undeterminism.
The idea is to gather undeterministic actions into a few processes and isolates these processes from the rest of the
distributed application by using message delivery semantics. Being isolated, the processes that execute undeterministic
actions can send messages to the outside world without incurring a global checkpointing.

To be more practical, we take an example aimed at being piece-wise realistic : a distributed application collects
exchange rates all over the world and does numerous calculations in order to anticipate the next exchange rates. Most
of the processes do only calculations, they are called “calculators”. The messages exchanged between the calculators
are tagged ezactly once. The calculators execute a calculus-intensive distributed application, and because exchange
rates continuously change, it is a long-lived application. The figure 1 represents the architecture of the distributed
application.

Some of the calculators are dedicated to the request and the receipt of exchange rates. These processes request
and receive the new values of exchange rates from one process that is dedicated to the collection of exchange rates
from Stock Exchanges. This process is named the “investigator”.

Each value is tagged with a date by the Stock Exchange that gives the value and the distributed application is
designed so that calculators are able to request and to receive the same value several times. Thus, the messages
exchanged by the calculators and the investigator can be lost due to the failures of either the investigator’s machine
or the calculators’ machines. In other words, we don’t have to make sure that these messages are neither orphan nor
missing. They can be orphan or missing. Therefore, the messages exchanged by the calculators and the investigator
are tagged no constraint.

The investigator uses timers for periodically requesting new values of some exchange rates to Stock Exchanges.
It is able to request the new values of the last » minutes and to request the same values several times. Moreover,
the external entity is assumed to be able to treat the same request several times. Thus, requests (resp. responses)
can be lost due to the failures of either the investigator’s machine or the external entity’s machine. Thus, requests
(resp. responses) are tagged no constraint and they don’t need to be committed (resp. saved) by the FTM before
being sent (resp. received).

Some of the calculators are dedicated to the display of the values that are newly calculated. These processes
send the values to one process that is dedicated to the display of exchange rates to users. This process is named the
“displayer”.

As in [Gold90], we allow stuttering : outputs may be re-played during re-executions. In fact, we can design the
displayer so that (1) it can make a difference between an execution and a re-execution, and, (2) during the re-execution,
it only selects some values to display and avoids the (too fast) display of numerous different values. Thus, the messages
sent by the calculators to the displayer can be orphan but can’t be missing. So, they are tagged at least once. At the
beginning of the re-execution, the displayer asks for one value per exchange rate. Those messages only appear when
rollbacking. Since the history of the execution must be equivalent to the one of the re-execution, the logical clock of
the calculators mustn’t change when receiving them. Therefore, those messages are tagged no constraint.
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screen. Since the set of messages sent to the external entity is not the same when re-executing, the messages exchanged
between the calculators and the displayer are tagged no constraint.

) no constraint
no constraint

no constraint

no constraint no/constraint

no\constraint

outsideworld calculators

distributed application

Figure 1: The distributed application of the example.

In consequence, the investigator and the displayer are completely isolated from the calculators and the distributed
application is capable of dealing with its environment without incurring a higher overhead :

e the checkpointing of the investigator or the displayer doesn’t cause the checkpointing of the calculators : the
calculators don’t causally depend on messages sent by the investigator or the displayer because these messages
are tagged no constraint.

e the consistent checkpointing of the calculators does cause the checkpointing of the displayer but not the one of
the investigator : the displayer causally depends on messages sent by the calculators because these messages are
tagged at least once.

e the failure of the investigator or the displayer doesn’t cause the failure of the calculators : the messages sent by
the investigator or the displayer to the calculators are tagged no consiraint.

e the failure of the calculators doesn’t cause the failure of the investigator or the displayer : since the messages
sent by the calculators to the investigator (resp. the displayer) are tagged no constraint (resp. at least once),
these messages can be received twice or more.

e the sending of messages by the investigator or the displayer to the outside world doesn’t cause the checkpointing
of the investigator or the displayer, respectively : these messages are tagged no constraint and thus don’t need
to be committed.

The message delivery semantics has permitted the design of a distributed application capable of dealing with its
environment without incurring a higher overhead. We only ask the programmer to make a minor intervention aimed
at being natural according to the design of distributed applications.

5 Discussion and conclusion

In [Leon94], the semantics used to reduce the amount of rollback required after a failure is the message treatment
semantics [Leon94]. The authors detect insignificant messages in a post mortem analysis. The state changes of
processes are of two types : an implicit state change 1s a change in the content of the process, an explicit state change
is the obligation to send out response messages, as a result of the processed message. For example, messages that
don’t cause either implicit or explicit state changes are insignificant. Our work differs mainly from theirs in three
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a slight intervention. Secondly, their analysis is post mortem while ours also happens during the execution. Thirdly,
the treatment semantics of a message isn’t known when sending the message. On the contrary, in our case the delivery
semantics of a message is known when sending the message because the programmer gives it. Finally, it should be
possible to use both treatment and delivery semantics.

In [Shri87] and in [Manc89], the authors claim that the transaction model (using objects and actions) and the
conversation model (using communicating processes) are duals of each other. “A pleasing consequence has been the
recognition that the techniques which have been developed for one model, turn out to have interesting and hitherto
unezxplored duals in the other model” [Shri87]. We have drawn our inspiration from this approach. In this paper,
we develop an extension to the conversation model that permits a nice support of undeterministic processes that
communicate with their environment. The solution is based on the concept of message delivery semantics. By
analogy, the message delivery semantics is similar to the invocation treatment semantics - with read only and modify
actions - that is often used in the objects / actions model.

The example of distributed application we have studied is typically naturally designed using the transaction model.
We think that using the conversation model would be as easy as using the transaction model. We think that gathering
all undeterministic actions and actions that manage the environment in a few processes is as natural as writing
transactions.
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