
A Secure Aggregation Protocol for Cluster-Based Wireless Sensor Networks
With no Requirements for Trusted Aggregator Nodes

Chakib Bekara and Maryline Laurent-Maknavicius ∗

Institut National des Télécommunications d’Evry
Département Logiciel-Réseaux

9 rue Charles Fourier, 91000 Evry Cedex, France
Email: {Chakib.Bekara, Maryline.Maknavicius}@int-edu.eu

Abstract

Data aggregation is an important feature in wireless
sensor networks (WSN), where data inputs at an aggre-
gator node are merged to produce compact small output
data, thus reducing the network’s transmission overhead
and preserving the scarce-battery resources of sensors. Un-
fortunately, if not secured against attackers, data aggrega-
tion can produce erroneous results, which can induce the
network operator to take wrong decisions. In this paper,
we present a secure aggregation protocol for cluster-based
WSN, which is adapted to a large variety of aggregation
functions, and which does not rely on trusted aggregator
nodes. The inherent transmission overhead is even smaller
than in other secure aggregation protocols.

1 Introduction

A WSN is composed of hundreds or thousands of
tiny resource-constrained devices, equipped with non-
rechargeable and non-replaceable batteries [1]. For such
sensors, transmitting is much more energy consuming than
computing [2] [3], so the amount of transmitted data on the
network must be kept as low as possible, in order to extend
the lifetime of the network.

In a typical WSN, data converge from sensors to the BS
through multi-hop communications [4]. As a consequence
forwarding sensors, especially those surrounding the BS,
are rapidly exhausting their energy in forwarding data to
the BS. In addition, sensors in the same area, are likely to
report the same observed phenomena evolution (i.e. tem-
perature, pressure, etc.) to the BS, thus resulting in re-
dundant information being uselessly routed to the BS, and
useless forwarding nodes’ batteries depletion. Moreover,
in some applications, rather than collecting data at their

∗The length of this article was agreed by the conference Chair.

brut state, the BS is more interested having a synthesized
information about a defined region, like the max, min or
average of the temperature over the region. To meet all
these requirements, several aggregation protocols were in-
troduced [5] [6] [7] [8], where the main objective is to re-
duce the transmission overhead in the network, using in-
network processing, in order to extend the lifetime of the
network. Aggregation can be seen as the process by which
data, during their forwarding from sensors to the BS, are
little-by-little merged by sensors called aggregator nodes,
to produce smaller output data. The aggregation processing
varies from the simple elimination of duplicated packets, to
the compression of data to smaller size, or mathematical op-
erations over sensed data, like sum, average, min, max, etc.
However, if the aggregation process is not secured, it can
be an easy target to attackers. For instance, an attacker can
inject false data or modify transmitted data, or more dan-
gerously compromise or claim to be an aggregator node, in
order to significantly falsify the result of aggregation. The
main objective of attacking aggregation process, is to pro-
duce false aggregation results, and make the BS or the net-
work operator accept false aggregation results, so the wrong
decisions and actions are taken.

Several secure aggregation protocols were proposed in
the literature [9] [10] [11]. However, these protocols either
introduce some heavy communication or computation over-
heads [11], handle a special kind of aggregation (agreement
on the same value) [11], provide a limited resilience against
aggregator nodes compromising [9], or require expensive
interactive verifications between the BS and sensors [10].

In this paper, we present a new secure aggregation
protocol for cluster-based WSN, which does not require
trusted aggregator nodes. Our protocol is resilient to nodes
compromising including aggregator nodes, and introduces
an acceptable communication and transmission overheads.
Our protocol allows the BS to verify the authenticity and
the validity of the aggregation results, even if all aggrega-

1

tor nodes and part of the sensors are compromised in the
network.

The rest of the paper is organized as follows. In sec-
tion 2 we review some secure aggregation protocols with
their performances. Section 3 presents our network model,
assumptions, security goal and defines our attacker model.
Section 4 details our secure aggregation protocol. Section 5
gives a detailed security analysis of our protocol and sec-
tion 6 its communication overhead. Section 7 compares
our protocol with some other protocols in the literature, and
section 8 gives an improvement of our protocol. Section 9
gives the limits of our protocol, and section 10 concludes
our work.

2 Related works

2.1 Zhu et al. protocol

In [11], Zhu et al. present an interleaved hop-by-hop au-
thentication protocol, that achieves secure aggregation even
in the presence of at most k-1 compromised nodes. In the
network, there are two kinds of nodes: sensor nodes and
forwarding nodes. Sensor nodes form a cluster of at least k
nodes and monitor an event of interest happening in an area.
The aggregator node is the cluster head. Forwarding nodes
constitute a path from the aggregator node (cluster head) to
the BS, and do no sensing activity. When triggered by the
event, the aggregator node sends to the BS a message con-
taining the event’s value, if and only if at least k nodes in the
cluster agree on the same value of the event. To secure the
aggregation result, each node in the network establishes up-
per or/and lower associations with other nodes (resp. upper
associate or/and lower associate), depending on its position,
as illustrated in Fig. 1.

Figure 1. The created upper/lower associa-
tions in Zhu et al protocol

Each association represents a secret shared pair-wise
key, initially established during network setup phase us-
ing some key-establishment process like [12] or [13]. Each

node in the network is initially loaded with a secret key it
shares with the BS. To send a data ”D” to the BS, each node
in the cluster (including the aggregator node), generates two
different MACs (Message Authentication Code) over ”D”,
one using the secret key it shares with the BS, and the other
one using the secret pair-wise key it established with its up-
per associate. Then, it sends the data along with the two
generated MACs to the aggregator node. The aggregator
node first verifies that at least k nodes agree on the same
value ”D”, and then sends to the BS a message containing
the resulted aggregate value ”D”, the set of MACs gener-
ated using upper associations secret pair-wise keys, and an
XOR of the k MACs generated using the secret keys shared
between the BS and the nodes of the cluster. A node x on
the path from the cluster to the BS can achieve early detec-
tion of data modification or injection attempt (either from
nodes of cluster or previous nodes in the path). Node x veri-
fies that the MAC generated by its lower associate y matches
the data ”D” contained in the message. After that, node x re-
places node y’s MAC by a new MAC it generates using the
secret pair-wise key it established with its upper associate.
This process is repeated until the message reaches the BS.
Once the message reaches the BS, the BS computes the set
of k MACs over the value ”D” using the set of secret keys it
shares with the corresponding nodes of the cluster, and then
computes an XOR over the generated MACs and compares
the generated XOR value with the XOR value contained in
the message, to have the insurance that ”D” is the originally
generated value from the cluster.

Zhu et al. protocol treats only one limited aggregation
case (majority k-voted value), which severely limits its use
in general WSN scenarios. The message sent from the ag-
gregator node to the BS contains at least, k+1 MACs plus
a reading ”D”, where we suppose that each MAC and read-
ing is 8-byte length, and the length of the path is at least
k nodes. Depending on where the compromised nodes are
placed in the network several nodes in the path are suscep-
tible to forward at least 8 × (k + 2) bytes. In addition, in
case no attack is made, most nodes of the path will forward
uselessly 8 × (k + 2) bytes, so will deplete early their en-
ergy. The k value must be sufficiently great to prevent that
an attacker can take the control of the cluster.

2.2 Hu et al. protocol

In [9], Hu et al. present a secure aggregation protocol,
that is resilient to single device key compromise. Hu et al.
protocol supposes that the network self-organizes on a rout-
ing tree where internal nodes, including the root node, are
responsible of aggregation, and only leaf nodes are respon-
sible of sensing activities (see Fig. 2). The protocol evolves
following two phases: delayed aggregation and delayed au-
thentication. In delayed aggregation, the aggregation of

2

data sent by nodes of level k of the tree is not achieved by
nodes of the upper level k-1, but is achieved by nodes of
level k-2 (grand-father), where level 0 is the root of tree. In
delayed authentication, once the BS receives the partial ag-
gregation results from the root of the tree, it discloses the
previously used authentication keys, to enable the aggrega-
tor nodes to authenticate the messages they received from
their children, and so detect and report any cheating aggre-
gator to the BS, which will invalidate the received aggrega-
tion results.

Figure 2. Hu et al tree-based aggregation pro-
tocol

Each node u in the network is initially loaded with a
unique secret key Ku it shares with the BS. From Ku, node
u derives authentication keys it uses for authenticating the
messages it sent to its parent node during the aggregation
process. Each node sends one message in each aggregation
round. For a node u, the ith sent message is authenticated
with key Ku i = E(Ku, i) known only to u and the BS,
where E is an encryption function. The aggregation works
as follow:

- Suppose we have a network of N nodes, and a binary
routing tree of depth lg2 N , where all leaf nodes are
in the same level. In the ith aggregation round, each
leaf node u (of level lg2 N) sends a message to its par-
ent containing its identifier, its reading Ru and a MAC
generated over the message using key Ku i.

- Each internal node v of level lg2 N − 1, stores the two
received messages from its two children, computes us-
ing its key Kv i a MAC over the aggregation of the
reading of its two children, and then sends a message
to its parent containing the identifier, the reading and
the MAC generated by each child, in addition to the

MAC it computes. Note that node v doesn’t send the
result of aggregation of its children readings.

- Each internal node x of level k < lg2 N − 1, receiv-
ing messages from its two children of level k+1, stores
them, and computes separately the aggregation of the
data generated by its left grand-children and its right
grand-children of level k+2, and a total MAC using its
key Kx i generated over the aggregation of data gener-
ated by all its grand-children. After that, node x sends
a message to its parent containing the identifiers of its
two children, the two aggregated values it computes
and their corresponding received MACs, and the total
computed MAC it generates.

- Upon receiving the aggregate results from the tree root,
the BS discloses the used authentication keys Kw i of
each node w on the network. The disclosed keys are
authenticated using the µTesla protocol [3]. Each ag-
gregator node will retrieve the keys used by its children
and grand-children.

- Each aggregator node checks the validity of the MACs
of its children and grand-children, received in the
stored messages sent by its children. If a node de-
tects a forged MAC, either from its children or grand-
children, it notifies the BS to invalidate the final result
of aggregation.

Hu et al. protocol can be used for any aggregation al-
gorithm. The protocol is resilient to aggregator nodes com-
promising, as long as there is no two consecutive collud-
ing compromised aggregator nodes in the tree. However,
this condition can not be guaranteed, because an attacker
can compromise nodes in a chosen order in the network.
The protocol introduces a heavy communication overhead
both during the aggregation phase, and during the key dis-
closure phase. Indeed, if we take as a simple aggregation
function the min of sensors’ readings, each internal node
in the aggregation tree, sends to its parent a message of
48-byte length, if we consider that each node’s identifier
is 4-byte length, and each reading and generated MAC is 8-
byte length. In addition, the BS widely discloses N keys in
the network after each aggregation round, where each key
is 8-byte length, and nodes of the aggregation tree must for-
ward the keys in reverse path, thus resulting on an additional
highly energy consumption.

3 Assumption, network model, adversary
model and security objective

3.1 Assumptions and network model

First, we suppose that the BS is a widely trusted and bat-
tery unlimited entity, which can not be compromised.

3

Second, we assume that once all nodes of the network
are deployed, they remain static, and they self-organize
into clusters to save energy when disseminating data from
the BS, and when sending data back to the BS. Different
cluster-based routing protocols were proposed in the liter-
ature [14] [15] [16] [17], where sensors self-organize into
clusters, and where routing and aggregation functions are
performed by the cluster-heads (CHs). Our protocol uses
Sun et al. protocol [17] as the underlying cluster formation
protocol, where the formed clusters form disjoint cliques,
and inside each cluster (clique) each node is in the commu-
nication range of the remaining nodes of the cluster. Con-
sequently, nodes of the same cluster can directly commu-
nicate, using one-hop communications only. Once clusters
are formed, nodes inside each cluster elect one of them to
act as a CH. each CH sends to the BS the list of sensors of
its cluster.

Third, we suppose that all nodes can directly reach the
BS as supposed in LEACH protocol [14]. In addition, and
in order to minimize the communication overhead on the
network, only CHs communicate directly with the BS, the
remaining nodes communicate only with the nodes of their
corresponding cluster. Nodes use two levels of communica-
tion power, a minimum power Pmin when communicating
between them inside the same cluster, and at most some
higher power Pmax > Pmin when a CH communicates
with the BS. Of course, a CH near the BS needs less en-
ergy to communicate with the BS than a CH far from the
BS. As a consequence, nodes define two communication
ranges, one small communication range (i.e. 15 or 20 me-
ters) for determining their one-hop neighbors, and one great
communication range (i.e. 150 meters) for communications
with the BS. To extend the lifetime of network, and to bal-
ance the transmission overhead amongst nodes of a cluster,
the CH of each cluster is periodically changed. We’ll see in
section 8, how this assumption can be relaxed, so that not
all nodes of the network need to directly reach the BS, but
instead, CHs which are far from the BS, rely on other CHs
to forward their data to the BS.

Fourth, like the LEACH protocol, we suppose that nodes
of a cluster periodically report their readings, using a
TDMA scheduling established by the CH after clusters were
formed. However, we use a slightly different definition
of TDMA scheduling, where the CH divides the time into
frames, and during each frame each node of the cluster has
two reserved non-consecutive slots: a broadcast slot and a
unicast slot. In the broadcast slot a node broadcasts its read-
ing in the cluster, and in the unicast slot it sends a unicast
message to the CH. All the broadcast slots are used before
the unicast slots can be used. Each node in the cluster re-
mains active during the broadcast slots in order to listen to
the broadcast messages of its neighbors of the same clus-
ter, and once it uses it unicast slot, it can go in sleep mode.

Readings of sensors inside a cluster can have different val-
ues, and the applied aggregation function can be the sum,
average, min, max of the readings, or any other mathemati-
cally computable function. Each CH sends the result of ag-
gregation of its cluster to the BS, which collects the aggre-
gate values of all clusters, and compute the total aggregate
value.

Fifth, we suppose that each node shares a secret key with
the BS, initially loaded before deployment. In addition, we
suppose that sensors use some key establishment mecha-
nisms, such as [12] [13] for establishing secret pair-wise
keys with their neighbors. To do so, each sensor is initially
loaded before its deployment with some secret key materi-
als, like a secret polynomial share [12] or a secret line of a
secret matrix [13].

3.2 Adversary model and security objec-
tive

We assume that an adversary can compromise a portion
of sensors of the network including all aggregator nodes
(cluster-heads), but can not compromise the BS. The ob-
jective of an attacker is to falsify the result of the aggre-
gation output generated by each cluster, and to make the
BS accepting false aggregation results. The easiest way for
an attacker to achieve this attack, would be compromising
the aggregator node and then generating an arbitrary result.
The other more complex solution would be compromising
a significant portion of sensors of a cluster in order to gen-
erate a sufficient amount of bogus readings. As a conse-
quence, that’s obvious that aggregator nodes are more at-
tractive for compromising than ordinary nodes. Our main
security objective is to protect the aggregation processing
against the compromising of aggregators, since aggregator
nodes are the basis cornerstone of the aggregation process,
and thus represent an ideal target for attackers to falsify the
result of aggregation with the minimum effort. Our protocol
does not cope with the detection of false readings reported
by non-detected compromised nodes, otherwise, this would
require some extra protection mechanisms like monitoring
nodes behavior, or a majority-based voting mechanism like
in [11].

Our protocol ensures the BS that a resulted aggregate
value was computed over the original data generated by au-
thorized well-behaving sensors of a cluster, even in the pres-
ence of compromised aggregator nodes. So, any attempt of
a compromised aggregator node to falsify the result of ag-
gregation, either by modifying readings of well-behaving
nodes, or discarding some of them will be detected at the
BS.

4

Table 1. Our notations
Notation Significance

u, v Two sensors of the WSN
CH A cluster-head
CCH A cluster headed by a cluster-head CH
k The average size of a cluster
Idu 4-byte unique identifier of node u in the

network
KBS,u 8-byte secret key shared between node u

and the BS.
Cu A counter shared between the BS and u

incremented after each aggregation round
Ku,v 8-byte secret pair-wise key established

between u and v
{Kn

u} A one way key-chain of length n + 1
elements generated by node u

Ki
u The ith key on the key-chain of node u

where Ki−1
u = H(Ki

u), i=1...n
K0

u The commitment key of the key-chain
generated by u

Ru 8-byte reading of node u
MACK(M) 8-byte message authentication code

generated over M using the secret key K
H A one way hash function, with an

output length of 8 bytes
a||b a concatenated to b

3.3 Notations

For clarity, the symbols and notations used throughout
the paper are listed in Table 1.

4 A secure aggregation protocol for cluster-
based WSN

As specified in 3.1, our protocol uses Sun et al. protocol
as the underlying cluster (cliques) formation protocol. Fur-
ther details on how clusters are formed are available in [17].
Next a naive secure aggregation protocol for LEACH pro-
tocol [14] is presented, followed by the presentation of our
secure aggregation protocol.

4.1 A naive secure aggregation protocol

In traditional cluster-based routing protocols, like
LEACH [14], TEEN [15] and APTEEN [16], nodes within
a cluster send their readings to their CH. The CH applies
an aggregation function over the readings to produce an ag-
gregate value, and then sends the aggregate value directly
to the BS [14] or to the higher level CH [15] [16]. In such
schemes, even if communications between nodes and their

CH, and between CH and the BS are secured (encrypted
and authenticated), compromising a CH is sufficient to pro-
duce false aggregation results, and the BS (or the higher
level CH) has no way to detect or verify the misbehavior of
the CH, because it has no way to compare the real gener-
ated readings on a cluster, with the resulted aggregate value
computed by the corresponding CH.

In the case of LEACH protocol [14], a naive secure ag-
gregation protocol can be described as follows:

During an aggregation round, each node v of a cluster
sends to its CH a message containing its reading, a first
MAC computed over its reading and the current counter
value Cv using KBS,v , and a second MAC computed over
the whole message using KCH,v:

v → CH : Rv‖MACKBS,v
(Rv, Cv)︸ ︷︷ ︸

1

‖MACKCH,v
(1)

Including Cv in the MAC computation protects the BS from
replay attacks. The CH can also protect itself against replay
attacks, by requiring that the second MAC is computed over
the sequence number of each packet sent by v.

Upon receiving messages from nodes of its cluster and
verifying their authenticity, the CH first generates an XOR-
ed MAC over the first MAC (MACKBS,v

(Rv, Cv)) re-
ceived in messages from sensor nodes. Then the CH sends
a message to the BS containing the readings of the sensors
of the cluster, the computed XOR-ed MAC, and the MAC
computed over the entire message using KBS,CH :

CH → BS :

2︷ ︸︸ ︷
{Ru}u∈CCH

‖
⊕

u∈CCH

MACKBS,u
(Ru, Cu)

‖MACKBS,CH
(2)

In case some nodes fail to send their readings, the CH in-
clude their identifiers in the sent message.

This solution is secure, because the BS can easily verify
if the CH was honest or not, by first computing the MAC
over each reading using the appropriate secret key it shares
with the node having sent the reading (assuming the BS
knows all nodes of clusters), and then calculates an XOR-ed
MAC over the computed MACs and verifies the result with
the XOR-ed MAC contained in the message sent by the CH.

This solution is highly energy consuming for the CH. If
we suppose that each cluster contains k nodes, and that an
authenticated packet (network layer) contains a data pay-
load of at most 24 bytes, a header of 12 bytes (source and
destination addresses, plus a sequence number), and a gen-
erated MAC of 8 bytes computed over the packet, the fol-
lowing transmission overhead applies to a cluster for each
aggregation operation:

- Each node sends one packet of 12-byte payload to its
CH.

5

- The CH sends 8×(k+1) bytes to the BS. However, be-
cause the transmitted message is unlikely to fit into one
packet, the CH splits it into several packets. Conse-
quently, the CH needs to transmit at least (k+1)

3 pack-
ets, where each frame has a 24-byte payload.

Because transmission is very energy consuming, and be-
cause the BS is generally pretty far from sensors, a CH is
early depleting its energy.

4.2 Our aggregation protocol

4.2.1 Initialization

Initially, when nodes are deployed, each node establishes
pair-wise keys with its one-hop neighbors using some key
establishment mechanisms like [12] and [13]. A pair-wise
key Kuv is used for authenticating any exchanged packet
between u and v. In addition, each node u generates a one-
way key chain {Kn

u} [3] to authenticate its locally broad-
casted messages, and sends the commitment key of the
key-chain K0

u to each neighbor, authenticated with the al-
ready established pair-wise key. Then, nodes self organize
into clusters (disjoint cliques) according to the protocol de-
scribed in [17].

Once clusters are formed, nodes inside each cluster elect
one of them to act as the cluster-head (CH). Each CH sends
to the BS a message containing the list of sensors in its
cluster. The CH authenticates the message using the se-
cret key it shares with the BS. Note that in LEACH pro-
tocol, CHs are first elected and then clusters are formed,
whereas in our protocol, clusters are first formed, and then
CHs are elected. As a consequence, in LEACH protocol
the maximum distance between two nodes inside a cluster
is two-hop, whereas in our protocol the maximum distance
between any two nodes of a cluster is exactly one-hop. As
such, in our protocol, a new CH selection does not change
the cluster sensor members, so there is no extra overhead.
In LEACH protocol, most of the time, a new CH selection
implies forming new clusters, so an extra communication
overhead is induced.

4.2.2 Aggregation protection

In our protocol, no trust is supposed in CHs, which play
the role of aggregator nodes. We adopt a slightly different
aggregation approach than classical aggregation protocols.
Instead of computing and authenticating the aggregation re-
sult by the CH only, all nodes of a cluster participate to
those procedures. The BS that knows the list of sensors per
cluster, can easily check whether the aggregation result of a
cluster was approved by the cluster members or not.

In our protocol, the ith aggregation round is done as fol-
lows:

1. Each node u of a cluster, including the CH, broadcasts
its reading Ru to the nodes of its cluster, authenticated
with the current key Kj

u of its key chain:

u → ∗ : Ru‖MACKj
u
(Ru)‖Kj

u

Because of only one-hop communications inside a
cluster, the time needed for an attacker to intercept the
message, and then modify the reading value Ru and
generate a new MAC value using the disclosed key
Kj

u, is greater than the time needed for the message to
reach all nodes of the cluster. Each key is used only
once for authentication, each node of the cluster will
only accept the first message authenticated with Kj

u,
and thus reject any further messages authenticated
with Kj

u.

2. Each node v of the cluster, including the CH, re-
ceives all the broadcasted messages. For each received
message, node v first authenticates the disclosed key
Kj

u using the stored authenticated key (previously dis-
closed key) Kj−1

u , by checking that Kj−1
u = H(Kj

u).
Second, it verifies that the received MAC matches the
message. If so, it accepts the message and replaces the
stored key with the new disclosed one. The previously
stored key will be no longer used. After collecting all
readings from the cluster, each node locally applies the
aggregation function over the readings to produce the
resulted aggregate value. If we suppose the aggrega-
tion function is the sum of readings, each node v com-
putes:

AGRv =
∑

u∈CCH

Ru

Then, each node v of the cluster calculates a MAC over
the concatenation of the computed aggregate result and
the current counter value Cv , using KBS,v . Also it
computes a MAC over the message using KCH,v , and
sends the following message to the CH:

v → CH :

3︷ ︸︸ ︷
AGRv‖MACKBS,v

(AGRv, Cv)

‖MACKCH,v
(3)

Including Cv into the MAC computation, protects the
BS from replay attacks. The CH can also self-protect
against replay attacks, by requiring that the second
MAC being computed over the sequence number of
each packet sent from a node of the cluster to the CH

3. The CH verifies the received messages, using the se-
cret pair-wise keys established with nodes of the clus-
ter. Classically, all nodes must report the same aggre-
gate value AGR, because all nodes of the cluster view

6

the same broadcasted messages. Finally, the CH com-
putes an XOR-ed MAC over the MACs generated by
nodes of the cluster over the resulted aggregate values,
and sends the following message to the BS:

CH → BS :

4︷ ︸︸ ︷
AGR‖

⊕
v∈CCH

MACKBS,v
(AGRv, Cv)

‖MACKBS,CH
(4)

If a node v of the cluster fails to send its computed
aggregate value AGRv , the CH includes Idv in the
message sent to the BS, to notify that the computed
XOR-ed MAC was not computed over the contribution
of node v. In case of conflicting aggregate values,
the CH can choose a majority voted aggregate value,
and computes the XOR-ed MAC only over the MACs
related to the majority voted aggregate value. In this
case, the CH must also report the Id of each node
whose computed aggregate value differs from the
majority voted aggregate value.

4. Upon receiving the message sent by a CH, the BS ver-
ifies its authenticity using KBS,CH . If authenticated,
the BS computes a set of MACs over the received ag-
gregate value AGR, using the set of secret keys it shares
with the nodes of the cluster. The BS then, calculates
an XOR-ed MAC over the computed MACs, and then
compares the computed XOR-ed MAC with the re-
ceived XOR-ed MAC. If the two XOR-ed MACs are
equal, the BS is ensured that AGR value was computed
over the original readings generated by the authorized
set of sensors on the cluster, otherwise it simply re-
jects the MAC. It may happen that the received XOR-
ed MAC is not computed over all MACs generated by
nodes of a cluster, either because some nodes fail to
report their result to the CH or some nodes have con-
flicting aggregate results. Depending on the BS’s pol-
icy, the BS can accept or deny the received aggregate
value. If the BS has defined a threshold parameter t,
the BS accepts the received aggregate result AGR, if
and only if the received XOR-ed MAC was computed
over at least t generated XORs, which means that at
least t nodes of the cluster must agree on the same ag-
gregate value result.

5 Security analysis of our protocol

As specified in 3.2, our protocol aims to protect the BS
from accepting false aggregate results, generated by a com-
promised, a malicious or a malfunctioning CH. By distribut-
ing the task of aggregation over all nodes of a cluster, we

alleviate the need to trust a central aggregator node (CH).
In our protocol all nodes participate in the computation and
the authentication of the resulted aggregate value. As a con-
sequence, a malicious or compromised CH cannot convince
the BS of the validity of a false aggregate value it generates,
because it cannot compute the MACs of well-behaving non-
compromised sensors over the false aggregate value it gen-
erates. Depending on the BS’s security policy, an attacker
has to compromise the entire cluster or part of it in order to
make a BS accept a false aggregate result. If the BS requires
that the computed aggregate value is computed over all the
readings of nodes of a cluster, an attacker must compromise
all nodes of the cluster, including the CH, in order that its
attack succeeds. If the BS’s policy is less strict, it can re-
quire that the aggregate value is computed over at least t
readings generated by t sensors of the cluster, where t < k.
In this case, an attacker must compromise the CH, plus t-1
sensors of the cluster in order to make its attack possible.
In general, the threshold value must be set at least to t = k

2
nodes.

Concerning the security of the aggregation process it-
self, each broadcasted reading Ru is authenticated using
node u’s current key Ki

u from its key chain. Each key
is used only once for authenticating one transmitted read-
ing, and to authenticate the next disclosed key. As a con-
sequence, an attacker cannot masquerade the identity of a
non-compromised node by sending readings on behalf of it.
The only malicious attack that remains possible is manipu-
lating the readings of compromised nodes.

As stated in 3.2 above, our protocol is not intended to
protect the network from malicious readings reported by
non-detected compromised nodes or malfunctioning nodes,
which can still legitimately authenticate their readings.
However, this can be done either by monitoring the read-
ings periodically sent by sensors, or by using a majority
voting system. In the monitoring solution, each node mon-
itors the evolution of readings of the nodes of a cluster. If
the readings of a node are detected to be significantly differ-
ent between two successive readings, nodes of a cluster can
decide to not take the reading of that node into the compu-
tation of the aggregate result. In majority-voting solutions,
sensors are assumed densely deployed, so that sensors in
each cluster practically report the same value of readings.
In this case, the result of aggregation on each cluster is the
majority voted value, like in [11]. In this way, each sensor
reports as aggregate value the majority voted value.

6 Transmission overhead

The energy dissipation of sensors is mostly due to trans-
mission. As referenced in different works [2] [3], trans-
mitting is more energy consuming than computing, so any
proposed protocol for WSN must reduce the transmission

7

overhead as much as possible. Aggregation protocols were
mainly proposed in order to reduce the amount of data
transmitted in a WSN, but introducing aggregation security
mechanisms has some extra overhead.

Our secure aggregation protocol attempted to introduce
small transmission overhead, while providing maximum se-
curity level. If we consider the aggregation operation is the
sum of sensors readings, and we take the same packet for-
mat as used in the secure naive solution, the following over-
head applies:

- Each node in the cluster (except the CH) transmits one
broadcast packet of 20-byte payload, and one unicast
packet (the computed aggregate value) of 16 + 1

8 ×
lg2(k) byte payload. The two transmitted packets are
sent using a minimal power transmission Pmin.

- The CH transmits one broadcast packet (its reading) of
20-byte payload using a minimal power transmission
Pmin and one unicast packet (the final aggregate value)
of 16+ 1

8×lg2(k) byte payload using a maximal power
transmission Pmax.

7 Comparison with previous works

As we can see, our protocol achieves higher security
against attacks and nodes compromising (including aggre-
gator nodes) than Hu et al. protocol, and is as secure as Zhu
et al. protocol and the described naive secure aggregation
protocol.

7.1 Our protocol vs Zhu et al. protocol

Compared to Zhu et al. protocol, our protocol can be
used with any computable aggregation function (sum, min,
max, average, etc.), while Zhu et al. protocol can only be
used in majority-voting scenarios. In addition, our proto-
col introduces less communication overhead on the CHs,
where Zhu et al protocol introduces heavy communication
overhead both on the CHs and on nodes on the path to the
BS. However, the transmission overhead of a node inside
a cluster is slightly less in Zhu et al. protocol (24 bytes)
than in our protocol (36 bytes). This is mainly due to the
supported aggregation operation in Zhu et al. protocol.

Unlike our protocol, Zhu et al. protocol allows a cluster
which is far away from the BS to reach it through a path, so
avoiding a costly long-distance direct communication (e.g.
150 meters), where in our protocol CHs directly commu-
nicate with the BS. However, in Zhu et al. protocol a CH
transmits at least 8× (k + 2) bytes, where in our protocol a
CH transmits only 16 + 1

8 × lg2(k) bytes to the BS, where
k is the size of the cluster. For a small value of k=13, a CH
transmits at least 120 bytes in Zhu et al. protocol, and only
17 bytes in our protocol. In addition, in Zhu et al. protocol,

several nodes in the path from the CH to the BS are also
involved in the forwarding of the 8× (k + 2) bytes sent by
the CH, so they’ll early deplete their batteries. Moreover,
in Zhu et al. protocol, if the path from the CH to the BS
changes, upper/down associations must be updated, result-
ing in extra communication overhead. In our protocol, no
such associations are made.

7.2 Our protocol vs Hu et al. protocol

Our protocol is more secure than Hu et al. protocol. Our
protocol can provide secure aggregation even if all aggre-
gator nodes were compromised and part of nodes in each
cluster. In Hu et al. protocol, if at least two successive ag-
gregator nodes U and V are compromised (where node U is
the child of V), an attacker can easily lie on the real read-
ings generated by sensors on the subtree routed at node U.
As a consequence, aggregator nodes of higher levels on the
tree near the BS became more attractive for attackers, be-
cause compromising them can significantly affect the final
aggregation result computed at the BS, and with less effort.

Concerning the transmission overhead in Hu et al. pro-
tocol, each leaf node (sensing node) sends 20 bytes to its
parent, where each internal node (aggregator node) sends
at least 48 bytes. In addition, when the BS discloses the
authentication keys, aggregator nodes participate in broad-
casting the 8×N bytes of keys, where N is the network size,
and this is very energy demanding for forwarding nodes.
Thus, even if the needed transmission power for aggregator
nodes is less in Hu et al. protocol than in our protocol, the
amount of transmitted data sent by a CH (aggregator node)
in our protocol is significantly less compared to the amount
of transmitted data sent by an aggregator node in Hu et al.
protocol. Moreover, in Hu et al. protocol, half of deployed
nodes are aggregator nodes, so half of the nodes will early
deplete their energy.

7.3 Our protocol vs naive solution

Our secure aggregation protocol and the naive secure ag-
gregation protocol, are both based on a cluster formation
protocol. Our solution is based on Sun et al. cliques forma-
tion protocol, while the naive solution is based on the well-
known LEACH protocol. In the naive solution, CHs spend
a lot of energy to send the result of aggregation (8× (k +1)
bytes) to the BS, especially when the BS is far from them.
In our protocol a CH sends only 16 + 1

8 × lg2(k) bytes as a
result of aggregation to the BS. Moreover, in the naive solu-
tion, as CH election happens prior to clusters construction,
a new CH election results in new formed clusters, and extra
communications are necessary for the new CH election and
nodes assignment to clusters. In our protocol, clusters are
first formed prior to CHs election, so in case of new CHs

8

being elected, no extra communication overhead is neces-
sary as the cluster remains unchanged. In our protocol, CH
nodes can be elected as a CH a longer time than in the naive
secure aggregation protocol, where CHs are more solicited
for transmission and are likely to suffer more rapidly from
battery exhaustion.

Our protocol is more tolerant to aggregator nodes fail-
ures than the naive solution. Indeed, in the naive solution, if
a CH fails or is unavailable, nodes of the cluster must elect
a new CH, and possibly create new cluster(s), so inducing
an extra communication overhead. In our protocol, if a CH
fails, nodes of a cluster can easily elect one of them to act as
a CH, while keeping the same cluster membership. In addi-
tion, if a CH failure happens during the aggregation process,
our protocol can be adapted to recover from the failure and
continue the aggregation from the point of failure, while
the naive solution requires the aggregation process to be re-
peated from the beginning, as a new CH election leads to
the creation of new clusters.

8 Improvement of our protocol

In the previous sections, we supposed that each sensor
can reach the BS using at most some sufficiently trans-
mission power Pmax, while using a minimal transmission
power Pmin < Pmax when communicating with the nodes
of its own cluster (clique), like in LEACH protocol. This
assumption can be seen as restrictive regarding the deploy-
ment area, and highly energy consuming for CHs, espe-
cially those far from the BS. We propose here a variation
of our protocol, where CHs being far from the BS, rely on
other CHs to forward the aggregation results to the BS. In
this latter case, CHs being far from the BS consume small
transmission power Pmed, where Pmin ≤ Pmed < Pmax,
in order to communicate with their neighbor cluster-heads.
To achieve this, CHs self-organize into multi-hop routing
backbone (i.e. hierarchical routing tree or others), where
each remote CH can send the result of aggregation of its
cluster through a path composed of other CHs. Note that
the resulted aggregate value of each remote cluster is sent
to the BS, but must not be aggregated as input by the other
CHs. While this solution decreases significantly the trans-
mission overhead of CHs which are far from the BS, it in-
creases in the same time the transmission overhead of CHs
near the BS, because they need to forward their own aggre-
gate values, but also the aggregate values of remote clusters.
However, because the energy consummation for transmis-
sion is proportionally related to the square of distance be-
tween the sender and receiver [14], and only linearly related
to the length of the transmitted message [14], using multi-
hop communications will decrease the overall network’s en-
ergy consummation.

9 Limitations of our protocol

Our protocol mainly suffers from its restriction to static
networks where new incoming nodes are rare (clusters are
formed once all nodes are deployed), and where nodes are
static once deployed. It’s clear that the cost of nodes join-
ing operations is less in the naive secure protocol based on
the LEACH cluster formation protocol, than in our protocol
based on Sun et al. cluster formation protocol. In LEACH
protocol, with CH election preceding cluster creation, a new
incoming node only requires to broadcast a join message
and selects one of the CHs responding to its request as its
cluster head. In Sun et al. protocol based on nodes organiz-
ing themselves into disjoint cliques, we can not ensure that
adding a node to any given cluster will result in a clique, so
new cliques must be formed again. As a conclusion, initial
clusters formation, and nodes adding operations are more
costly in Sun al. protocol than in LEACH protocol, but pe-
riodical CHs election, and recovery operation after CH fail-
ures are more costly in LEACH protocol than in Sun et al.
protocol.

10 Conclusion and perspectives

This paper proposes a new secure aggregation protocol
for WSN which does not raise on the usual restrictive condi-
tion that the aggregator nodes are trusted nodes, and which
introduces little transmission overhead in the network, es-
pecially for CHs. Our protocol is resilient to the compro-
mising of all aggregator nodes and part of nodes in the net-
work. Our protocol distributes the task of aggregation inside
a cluster, such that an attacker has no way to falsify the re-
sult of aggregation other than compromising the aggregator
node and a significant portion of nodes in the cluster. Our
protocol can be improved to reduce the energy consumma-
tion of CHs being far from the BS; the idea is to create a
routing backbone based on CHs, that helps preserving the
overall network energy. As future works, we plan to adapt
our protocol to dynamic WSN, where nodes joining opera-
tions might be frequent, and where nodes are moving inside
the network.

References

[1] I. F. Akyildiz, W. Su and Y. Sankarasubramaniam,
”Wireless sensor networks: a survey”, Computer Net-
works (38), pp. 393-422, 2002

[2] C. Karlof, N. Sastry and D. Wagner.”TinySec: A Link
Layer Security Architecture for Wireless Sensor Net-
works”. SenSys04, November 35, 2004.

[3] A. Perrig, R. Szewczyk, V. Wen, D. Cullar and J. D. Ty-
gar, ”Spins: Security protocols for sensor networks”, In

9

Proc. of the 7th Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking, pp. 189-
199, 2001.

[4] K. Akkaya and M. Younis. ”A survey on routing proto-
cols for wireless sensor networks”. Ad Hoc Networks 3,
pp. 325-349, 2005

[5] B. Krishnamachari, D. Estrin and S. Wicker. ”The Im-
pact of Data Aggregation in Wireless Sensor Network”.
Proceedings of the 22nd International Conference on
Distributed Computing Systems, pp. 575- 578, July 2-5,
2002.

[6] C. IntanagonwiI. F. Akyildiz, W. Su and Y. Sankarasub-
ramaniam, ”Wireless sensor networks: a survey”, Com-
puter Networks (38), pp. 393-422, 2002.

[7] D. Estrin and R. Govindin. ”Impact of Network Den-
sity on Data Aggregation in Wireless Sensor”. Proceed-
ings of the 22 nd International Conference on Distributed
Computing Systems, pp. 457- 458, July 2-5, 2002.

[8] J. N. AI-Karaki, R. UI-Mustafa and A. E. Kamal. ”Data
Aggregation in Wireless Sensor Networks - Exact and
Approximate Algorithms”. Workshop on High Perfor-
mance Switching and Routing, pp. 241- 245, April 19-
21, 2004.

[9] L. Hu and D. Evans. ”Secure Aggregation for Wireless
Networks”. Proceedings of the 2003 Symposium on Ap-
plications and the Internet Workshops, pp. 384- 2003

[10] B. Przydatek, D. Song and A. Perrig. ”SIA: Secure In-
formation Aggregation in Sensor Networks”. SenSys03,
November 5-7, 2003.

[11] S. Zhu, S. Setia, S. Jajodia and P. Ning. ”An Inter-
leaved Hop-by-Hop Authentication Scheme for Filtering
of Injected False Data in Sensor Networks”. Proceedings
of the 2004 IEEE Symposium on Security and Privacy,
pp. 259-271, May 9-12, 2004.

[12] Yung, ”Perfectly secure key distribution for dynamic
conferences”, In Proc. of the 12th Annual International
Cryptology Conference on Advances in Cryptology,
Lecture Notes in Computer Science, vol. 17, Springer-
verlag, pp. 471-486, 1992.

[13] R. Blom. ”An Optimal Class of Symmetric Key Gen-
eration”. Advances in Cryptography: Proc. of EURO-
CRYPT 84, Lecture Notes in Computer Science, 209,
Springer-Verlag, Berlin, pp. 335-338, 1984.

[14] H. Heinzelman, A. Chandrakasan and H. Balakrish-
nan. ”Energy-efficient communication protocol for wire-
less microsensor networks”. Proceedings of the 33rd An-
nual Hawaii International Conference on System Sci-
ences, Jan 4-7, 2000.

[15] A. Manjeshwar and D. Agrawal. ”TEEN: A proto-
col for enhanced efficiency in WSN”. Proceedings of
the 15th International Parallel & Distributed Processing
Symposium, pp. 2009-2015, April 23-27, 2001.

[16] A. Manjeshwar and D. Agrawal. ”APTEEN: A hybrid
protocol for efficient routng and a comprehensive infor-
mation retrieval in WSN”. Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium,
pp. 195-202, April 15-19, 2002.

[17] K. Sun, P. Peng, P. Ning and C. Wang. ”Secure dis-
tributed cluster formation in wireless sensor networks”.
22nd Annual Computer Security Applications Confer-
ence, December 11-15, 2006

[18] M. Grey and D. Jonhnson. ”Computers and intracrbil-
ity: A guide to theory of NP-Completeness”. W.H Free-
man and Company, 1979.

10

