
Attribute-based Signatures for supporting
Anonymous Certification

Nesrine Kaaniche and Maryline Laurent

SAMOVAR, Telecom SudParis, CNRS, University Paris-Saclay
Member of the Chair Values and Policies of Personal Information

{name.last name@telecom-sudparis.eu}

Abstract. This paper presents an anonymous certification (AC) scheme,
built over an attribute based signature (ABS). After identifying proper-
ties and core building blocks of anonymous certification schemes, we
identify ABS limitations to fulfill AC properties, and we propose a new
system model along with a concrete mathematical construction based
on standard assumptions and the random oracle model. Our solution
has several advantages. First, it provides a data minimization crypto-
graphic scheme, permitting the user to reveal only required information
to any service provider. Second, it ensures unlinkability between the dif-
ferent authentication sessions, while preserving the anonymity of the
user. Third, the derivation of certified attributes by the issuing author-
ity relies on a non interactive protocol which provides an interesting
communication overhead.

Keywords– user privacy, anonymous certification, attribute-based sig-
natures

1 Introduction

Anonymous Credentials (AC) were first introduced by David Chaum [12] in 1982,
and fully formalized by Camenisch and Lysyanskaya [7] in 2001. These schemes
are considered to be an important building block in privacy-preserving identity
management systems, as they permit users to prove ownership of credentials to
service providers while not being traced in the system. That is, after he gets
credentials over some of his attributes from some trusted issuing authorities,
the user can derive proofs for successive presentations to service providers. The
AC properties include that the service providers are not able to link a single
received proof to another or to any information relative to the owner, even in
case of collusion between providers and with the credential issuer.
Up to now, two main AC solutions emerged from industry, the Idemix scheme [18]
from IBM based on the Camenish-Lysyanskaya (CL) signatures [7, 8], which is
a close variant of group signatures, and the U-Prove scheme [23] from Microsoft
which relies on the Brands’ blind signature [5].
Interest for AC comes from their ability to strictly support the data minimiza-
tion principle [20], which expects that data collection should be proportional

2 Nesrine Kaaniche and Maryline Laurent

and not excessive compared to the purpose of the collection. This interest is
today magnified as this principle is at the core of the future European General
Data Protection Regulation [14] and also the U.S. National Strategy for Trusted
Identities in Cyberspace (NSTIC) [17].
This paper proposes a new AC scheme based on the Attribute Based Signatures
(ABS). Originally, the ABS is designed for the user to sign a message with fine
grained control over identifying information, and it does not support the proper-
ties required for AC. As such, after a clear identification of missing properties, an
abstract schemeHABS is presented followed by a concrete construction detailing
how these access-policy based signatures can efficiently serve AC objectives. Our
scheme has several advantages over industrial AC solutions. First, the issuance
procedure is much more efficient, as there is no need for a heavy interactive
protocol between the user and the issuer. The issuer can generate a credential
based on the user’s public key only, while Idemix and U-Prove schemes require
the user to introduce a random part of the secret key each time a new creden-
tial is certified as they rely on group and blind signatures. Second, our scheme
supports a flexible selective disclosure mechanism at no extra computation cost,
which is inherited from the expressiveness of ABS for defining access policies.
Paper Organization – Section 2 introduces Anonymous Credential systems
(AC) along with the actors, procedures and security requirements. Section 3 de-
fines the Attribute based Signatures (ABS), and provides a generic analysis of
ABS properties thus highlighting the missing properties for the ABS to align
to the AC requirements. Section 5 presents a concrete construction of our novel
AC system, and Section 6 gives a detailed security analysis with an extension
of the scheme to support multiple issuers. Finally, theoretical comparisons with
existing systems are discussed in Section 7 and conclusions are given in Section 8.

2 Anonymous Credentials

Anonymous Credentials (AC) also known as privacy preserving attribute cre-
dentials refer to some well identified entities and procedures and need to achieve
some security requirements.

Entities – An anonymous credential system involves several entities. Some
entities, such as the user, the verifier and issuer are mandatory, while other
entities, such as the revocation authority and the inspector are optional [6].
The user is the central entity, whose interest is to get privacy-preserving access to
services, offered by service providers, known as verifiers. Each verifier enforces
an access control policy to its resources and services based on the credentials
owned by the users and the information selected and included in presentation
tokens. For this purpose, each user has first to obtain credentials from the is-
suer(s). Then, he selects the appropriate information from the credentials and
shows the selected information to the requesting verifier, under a presentation
token. Note that the verifier access control policy is referred to as presentation
policy. Both the user and the verifier have to obtain the most recent revocation

Attribute-based Signatures for supporting Anonymous Certification 3

information from the revocation authority to generate, respectively verify, pre-
sentation tokens. The revocation authority has to revoke issued credentials and
maintain the list of valid credentials in the system. When revoked, a credential
can no longer be used to derive presentation tokens. The inspector is a trusted
entity, which has the technical capabilities to remove the anonymity of a user
when needed.

Procedures – An AC system is defined by the following algorithms:
– Setup: this algorithm takes as input a security parameter ξ (security level)
and outputs the public parameters params and the public-private key pair of
the issuer (pkis, skis).
– UserKG: this algorithm takes as input j ∈ N and outputs the key pair
(pku, sku) of the user j.
– Obtain ↔ Issue: the Obtain ↔ Issue presents the issuance procedure. The
Issue algorithm performed by the issuer takes as input the public parameters
params, the private key of the issuer pkis, the public key of the user sku and
the set of attributes {ai}Ni=1, where N is the number of attributes. The Obtain
algorithm executed by the user takes as input the secret key of the user sku and
the public key of the issuer pkis. At the end of this phase, the user receives from
the issuer a credential C.
– Show ↔ Verify: the Show ↔ Verify is the presentation procedure be-
tween the user and the verifier. With respect to the presentation policy, the
Show algorithm takes as input the user’s secret key sku, the issuer’s public key
pkis, the set of required attributes {ai}N

′

i=1 and a credential C, and it outputs
a presentation token. Verify is a public algorithm performed by the verifier;
it takes as input the public key of the issuer pkis, the set of attributes {ai}N

′

i=1,
and the presentation token. At the end of this presentation phase, the Verify
outputs a bit b ∈ {0, 1} for success of failure of the verification.

Security Requirements – Anonymous credential systems have to fulfill
the following security properties:
correctness – a honest user must always succeed in proving validity of proofs
to the verifier in an anonymous way.
anonymity – the user must remain anonymous among a set of users during the
presentation procedure to the verifier.
unforgeability – a user not owning an appropriate legitimate credential is not
able to generate a valid presentation token.
unlinkability – this property is essential for user privacy support and is closely
related to the anonymity property. Unlinkability is divided into two properties
issue-show unlinkability and multi-show unlinkability as follows: (i) the issue-
show unlinkability ensures that any information gathered during credential is-
suing cannot be used later to link the presentation token to the original creden-
tial,(ii) the multi-show unlinkability guarantees that several presentation tokens
derived from the same credential and transmitted over several sessions can not

4 Nesrine Kaaniche and Maryline Laurent

be linked by the verifier.

Additionally, privacy preserving attribute based credentials have to ensure
several functional features, namely revocation, inspection and selective disclo-
sure. The selective disclosure property refers to the ability provided to the user
to present to the verifier partial information extracted or derived from his cre-
dential, for instance, to prove he is older than 18 to purchase liquors, while not
revealing his birth date.

3 Attribute based Signatures for Anonymous Credentials

This section introduces Attribute based Signature schemes (ABS) with their
associated algorithms and their security properties. Then, an analysis shows that
ABS is missing some properties to serve as a building block for AC support.

3.1 Attribute-based Signatures (ABS)

Attribute-based Signatures (ABS) [22] is a flexible primitive that enables a user
to sign a message with fine grained control over identifying information. In ABS,
the user possesses a set of attributes and one secret signing key per attribute
which is obtained from a trusted authority. The user can sign a message with
respect to a predicate satisfied by his attributes. In commonly known settings,
the different parties include a Signature Trustee (ST), the Attribute Authority
(AA), and potentially several signers and verifiers. The ST acts as a global
entity that generates authentic global systems parameters, while the AA issues
the signing keys for the set of attributes of the users (signers). The role of
ST and AA can be merged into the same entity. ABS supports the following
property which is fundamental for support of privacy. AA, although knowing
the signing keys and the attributes of the users, is unable to identify which
attributes have been used in a given valid signature, and thus he is unable to
assign the signature to his originating user and/or to link several signatures as
originating from the same user. In the last few years, multiple ABS schemes
emerged in the cryptographic literature, considering different design directions.
In a nutshell, (i) the attribute value can be a binary-bit string [16,21,22,24,26], or
has a particular data structure [28], (ii) access structures may support threshold
policies [16, 21, 26], monotonic policies [22, 28] or non-monotonic policies [24],
and (iii) the capacity of attributes’ private keys issuance can be provided by a
single authority [22,26,28], or a group of authorities [22,24].
Let us explain the general ABS signing procedure in the simple case with one
single AA authority. First, the AA derives the private keys {sk1, · · · , skN}, with
respect to the attribute set identifying the requesting signer, denoted by S =
{a1, · · · , aN}, where N is the number of attributes. The private keys’ generation
procedure is performed using the AA’s master key MK and some related public
parameters, both generated during the setup phase. Then, for signing a message
m sent by the verifier along with a signing predicate Υ , the user needs his private

Attribute-based Signatures for supporting Anonymous Certification 5

keys and a set of attributes satisfying the predicate Υ . Finally, the verifier is
able to verify that some user who holds a set of attributes satisfying the signing
predicate has signed the message. An ABS scheme is defined by the following
algorithms:

– ABS.setup – this algorithm is performed by (ST). It takes as input the
security parameter ξ and outputs the global public parameters params, con-
sidered as an auxiliary input to all the following algorithms, and the master
key MK of AA.

– ABS.keygen – this algorithm executed by AA takes as input his master key
MK and a set of attributes S ⊂ S (where S = {ai}Ni=1, N is the number of
attributes and S is the attribute universe). It outputs a signing key skS

1.
– ABS.sign – this algorithm takes as input the private key skS , a message m

and a signing predicate Υ , such as Υ (S) = 1 (S satisfies Υ). This algorithm
outputs a signature σ (or an error message ⊥).

– ABS.verif – this algorithm takes as input the received signature σ, the
signing predicate Υ and the message m. It outputs a bit b ∈ {0, 1}, where 1
denotes accept ; i.e, the verifier successfully checks the signature, with respect
to the signing predicate. Otherwise, 0 means reject.

3.2 Security Properties of Attribute based Signatures

First, an ABS scheme has to satisfy the correctness property (Definition 1)

Definition 1. Correctness – An ABS scheme is correct, if for all(params,MK)←
ABS.setup(ξ), all messages m, all attribute sets S, all signing keys skS ←
ABS.keygen(S,MK), all claiming predicates Υ such as Υ (S) = 1 and all sig-
natures σ ← ABS.sign(skS ,m, Υ), we have ABS.verif(σ,m, Υ) = 1.

In addition, based on Maji et al. work [22], we provide the two following formal
definitions that capture security properties of ABS schemes.

Definition 2. Perfect Privacy – An ABS scheme is perfectly private, if for
all (params,MK)← ABS.setup(ξ), all attribute sets S1, S2, all secret signing
keys sk1 ← ABS.keygen(S1,MK), sk2 ← ABS.keygen(S2,MK), all messages
m and all claiming predicates Υ such as Υ (S1) = Υ (S2) = 1, the distributions
ABS.sign(sk1,m, Υ) and ABS.sign(sk2,m, Υ) are indistiguishable.

In a nutshell, if the perfect privacy property holds, then a signature does not
leak which set of attributes or private signing key were originally used.

Definition 3. Unforgeability – An ABS scheme is unforgeable if the adver-
sary A can not win the following game:
– setup phase: the challenger C chooses a large security parameter ξ and runs
setup. C keeps secret the master key MK and sends params generated from

1 For ease of presentation, we denote the signing key as a monolithic entity, but, in
many existing schemes, the signing key consists of separate elements for each single
attribute in S.

6 Nesrine Kaaniche and Maryline Laurent

ABS.setup to the adversary A.
– query phase: the adversary A can perform a polynomially bounded number of
queries on S and (m,Υ) to first the private key generation oracle and second the
signing oracle.
– forgery phase: A outputs a signature σ∗ on messages m∗ with respect to Υ ∗.
The adversary A wins the game if σ∗ is a valid signature on messages m∗ for a
predicate Υ ∗, the couple (m∗, Υ ∗) has not been queried to the signing oracle and
no attribute set S∗ satisfying Υ ∗ has been submitted to the private key generation
oracle.

This unforgeability property also includes the collusion among users trying to
override their rights by combining their complementary attributes to generate a
signature satisfying a given predicate Υ . It also covers the non-frameability case
when a user also aims to override his rights but on his own.

3.3 Bridging the gap between ABS and AC

As far as we know, ABS is still considered as being incompatible with AC pur-
pose of anonymity [24], mostly because ABS assumes that AAs are fully trusted
authorities as they know the secret keys of each user. Moreover, in case of mul-
tiple AAs, as needed in AC systems, the issued credentials can be linked by the
AAs as they are all based on the same public key.

Let us give a simple example to illustrate how ABS could be adapted to
AC purpose. A student (acting as user) obtains a certified credential (i.e. stu-
dent card) by the University (which plays the role of the issuer) over the set
of his attributes S = {a1 := Name; a2 := Bob, a3 := City, a4 := Paris, a5 :=
Studies, a6 := InformationSecurity}. The whole set of attributes is commit-
ted to a single value using the public key of the user, and it is signed with the
private key of the issuer, to generate the resulting credential, denoted by C.
Later, the student can, for example, prove that he is student living in Paris,
without revealing his name nor his studies’ major. For this purpose, we consider
the signing predicate Υ = (Studies ∨ Teaches) ∧ (City ∧ (Paris ∨ Lille)).
The user whose attributes satisfy the predicate can use his credential C to suc-
cessfully extract the appropriate keys relative to the requested attributes a3,
a4 and a5. The student thus remains anonymous among the group of students
living in Paris, and is able to prove the requested features because the signature
of the University over the student’s attributes is valid. This example brings first
elements for adaptation of ABS to AC purpose, but additional work is necessary.

Additional Requirements For ABS – Let us analyse first the for-
mal security model proposed in the litterature for ABS to satisfy the required
AC properties of anonymity and unforgeability (Section 2). The first model is
proposed by Shahandashti and Safavi-Naini [26], and gives main procedures and
basic security properties, such as correctness, unforgeability and signer-attribute
privacy. Later, Maji et al. [22] and El Kaafarani et al. [13] introduce and formal-
ize the perfect privacy property which requires that a signature reveals neither

Attribute-based Signatures for supporting Anonymous Certification 7

the identity of the user nor the set of attributes used for the signing proce-
dure. These models do not entirely match our needs for the design of secure AC
scheme. More precisely, the following requirements need to be addressed:
– Traceability of signatures : by essence, an ABS scheme supports the
anonymity of the user. As a consequence, there is a need to introduce a new pro-
cedure Inspec to remove anonymity, and identify the user originating an ABS
signature. To prevent issuers to trace users, this algorithm should be carried out
by a tracing authority, equipped with a secret key and referred to as inspector.
Such a feature is important in settings where accountability and abuse preven-
tion are required.
– Unlinkability between issuers : in ABS schemes, when a user requests
multiple authorities to issue credentials with respect to his attributes, these au-
thorities can link issued credentials to one user through its public key. To satisfy
the unlinkability property of AC schemes, a novel ABS issuance procedure has
to be designed.
– Replaying sessions : to counteract ABS signature replay attacks, the verifier
has to generate for each authentication session, a new message which can might
depend on the session data, such as the verifier’s identity and the current time.

4 Our New Anonymous Certification Scheme

This section gives a high-level presentation of our new AC scheme based on ABS
with an overview of the procedures and algorithms. Then the considered security
model with formalized security properties are defined.

4.1 System Model

Our new privacy-preserving attribute based signature HABS relies on three pro-
cedures based on the following seven algorithms that might involve several users
(i.e; signers). The verification and inspection procedures involve only public data.
In the following, we denote by HABS our new AC scheme and by ABS the ABS
basic functions as defined in section 3.

HABS.Setup – this algorithm runs the ABS.setup algorithm. It takes as in-
put the security parameter ξ and outputs the global public parameters params.
This algorithm also derives a pair of public and private keys (pkins, skins) for
the tracing authority referred to as the inspector. In the following, public pa-
rameters params are assumed to include the public key of the inspector, and all
the algorithms have default input params.

HABS.KeyGen – this algorithm takes as input the global parameters params
and outputs the pair of public and private keys either for users and for the is-
suer. The public and private keys are noted respectively (pku, sku)j for user j
and (pkis, skis) for the issuer.

8 Nesrine Kaaniche and Maryline Laurent

HABS.Obtain ↔ HABS.Issue – the credential issuing procedure corre-
sponds to the ABS.keygen algorithm. The HABS.Issue algorithm executed by
the issuer takes as input the public key of the user pku, a set of attributes S ⊂ S
(where S = {ai}Ni=1, N is the number of attributes and S is referred to as the
attribute universe), the private key of the issuer skis and the public key of the
inspector pkins. It outputs a signed commitment C over the set of attributes S.
The HABS.Obtain algorithm is executed by the user and corresponds to the
collection of the certified credentials from the issuer. This is up to the user to
verify the correctness of the received signed commitment over his attributes.
In case of verification, the HABS.Obtain algorithm takes as input the signed
commitment C, the private key of the user sku, the public key of the issuer pkis
and eventually the public key of the inspector pkins. It outputs a bit b ∈ {0, 1}.

HABS.Show ↔ HABS.Verify – the presentation procedure includes the
ABS.sign and ABS.verif algorithms of the ABS signature. This procedure en-
ables the verifier to check that a user has previously obtained credentials on some
attributes from a certified (i.e; authentic) issuer and that he is authorized to ac-
cess a service with respect to some access policy. As such, the verifier has first to
send a random value m (which corresponds to the message m in ABS.sign) to
the user. To counteract replay attacks (Section 3.3), each authentication session
is personalized with this random value which can be for instance the verifier’s
identity concatenated with his clock value. Second, the user signs the received
random value, based on his credential. In a nutshell, the user first selects the
sub-set of his attributes that satisfies the signing predicate Υ (Υ (S ′) = 1) and he
signs the received value m. Note that an attribute based signature can generally
be considered as a non-interactive proof of knowledge based on the Fiat-Shamir
heuristic [15]. That is, instead of sending his attributes to the verifier, the user
only has to prove he gets from a certified issuer some attributes satisfying the
access policy. The user finally sends his signature Σ to the verifier who checks
the resulting signature by verifying whether ABS.verif(pkis, Σ, Υ,m) = 1.
The HABS.Show algorithm takes as input the randomized message m, a sign-
ing predicate Υ , the private key of the user sku, the credential C and a sub-set
of his attributes S ′, such as Υ (S ′) = 1. This algorithm outputs a signature Σ
(or an error message ⊥).
The HABS.Verify algorithm takes as input the received signature Σ, the pub-
lic key of the issuer(s) pki, the signing predicate Υ and the message m. It outputs
a bit b ∈ {0, 1}, where 1 denotes accept for a successful verification of the signa-
ture, and 0 means reject.

HABS.Inspec – our scheme supports the inspection procedure performed
by a separate and trusted entity referred to as the inspector. It relies on two
algorithms namely HABS.trace and HABS.judge needed to identify the user
and give a proof of judgment.
The HABS.trace algorithm takes as input the secret key of the inspector skins,
the issuer(s) public key(s) pkis and the signature Σ. It outputs the index j of

Attribute-based Signatures for supporting Anonymous Certification 9

the user that has signed the message m with respect to the predicate Υ . It also
outputs a proof $.
TheHABS.judge algorithm takes as input the public key(s) of the issuer(s) pkis,
the signature Σ, the user index j and the proof $. It outputs b ∈ {0, 1}, where
1 means that $ is a valid proof proving that user j originating the signature Σ.

4.2 Security Model

We consider two realistic threat models for proving security and privacy prop-
erties of our attribute based credential construction. We first point out the case
of honest but curious verifiers and issuers. That is, both the verifiers and issuers
are honest as they provide proper inputs or outputs, at each step of the protocol,
properly performing any calculations expected from them, but they are curious
in the sense that they attempt to gain extra information from the protocol. As
such, we consider the honest but curious threat model against the privacy re-
quirement with respect to the anonymity and unlinkability properties.
Second, we consider the case of malicious users trying to override their rights.
That is, malicious users may attempt to deviate from the protocol or to provide
invalid inputs. As such, we consider the malicious user security model mainly
against the unforgeability requirement, as presented in Section 4.2.1.

4.2.1 Unforgeability The unforgeability property means that unless the pri-
vate key of the issuer (resp. the user) is known, it is not possible to forge a valid
credential – in case of Issue(resp. the presentation token of the user – in case
of Show). This property also covers non frameability and ensures that even if
users collude, they cannot frame a user who did not generate a valid presentation
token. We thus define unforgeability based on three security games between an
adversary A and a challenger C, that simulates the system procedures to interact
with the adversary.

Definition 4. Unforgeability – We say that HABS satisfies the unforgeability
property, if for every PPT adversary A, there exists a negligible function ε such
that:

Pr[ExpA
unforg(1ξ) = 1] ≤ ε(ξ)

where ExpA
unforg is the security experiment against the unforgeability property,

with respect to MC-Game, MU-Game and Col-Game introduced hereafter.

On the one hand, MC-Game, formally defined hereafter, enables to capture the
behaviour of malicious users trying to forge a valid credential. That is, during
the first phase, Phase I , the challenger C runs the HABS.Setup algorithm,
gives the public parameters params to the adversary A and proceeds as follows:
– Keygen : the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and a user (u). The key pair of the
user (pku, sku) is sent to the adversary.
– Issue-Query : the adversary A can request C, as many times as he wants, for
getting the credential result Ci (for session i) obtained from the HABS.Issue

10 Nesrine Kaaniche and Maryline Laurent

algorithm applied over the public key pku, and a set of attributes Si.
Then, in Phase II , C requests the adversary to provide a valid credential over a
set of attributes S (such that S has not been output during the previous Issue-
Query phase). Thus, A runs ForgeCred and tries to compute a valid credential
C∗. The adversary A wins the game if he provides a valid credential. That is,
the HABS.Obtain(C∗, sku, pkis) algorithm returns an accept.

On the other hand, MU-Game and Col-Game security games enable to cap-
ture the behaviour of a malicious user, trying a forgery of the presentation token,
either on his own (i.e; MU-Game) or by colluding with other legitimate users
(i.e; Col-Game).

First, the MU-Game is formally defined as follows: during Phase I , the chal-
lenger C runs the HABS.Setup algorithm, gives the public parameters params
to the adversary A and proceeds as follows:
– Keygen : the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and a user (u). The key pair of the
user (pku, sku) is sent to the adversary.
– Issue : the challenger C runs the HABS.Issue algorithm over the public key
pku, and a set of attributes S. He sends to the adversary A the set of attributes
S, the credential C and a predicate Υ such that Υ (S) = 1.
– Show-Query : the adversary A can request as many times as he wants the
HABS.Show over the predicate Υ , the private key of the user sku, a randomly
generated message mi (for session i), and a sub-set of his attributes S ′ where
Υ (S ′) = 1. Each request i results in a signature Σi.
Then, in Phase II , the challenger C requests the adversary to provide a valid
signature over a randomized message m (such that m has not been output dur-
ing the previous Show-Query phase). Thus, the adversary A executes ForgeSig
and tries to compute a valid signature Σ∗.

Second, the Col-Game, considered as a sub-case of the MU-Game, is formally
defined as follows: the challenger C first runs the HABS.Setup algorithm, gives
the public parameters params to the adversary A and proceeds such as:
– Keygen: the challenger C runs the HABS.KeyGen algorithm, in order to get
the key pairs of the issuer, the inspector, and two users u1 and u2. Both key
pairs obtained (pku1

, sku1
) and (pku2

, sku2
) are sent to the adversary A.

– Issue : C runs theHABS.Issue algorithm over the public key pkuk
(k ∈ {1, 2}),

and a set of attributes Sk where S1 and S2 are disjoint and non empty. He sends
to A the set of attributes Sk, the obtained credential Ck, a random m and a
predicate Υ for which Υ (Sk) 6= 1, but Υ (S1 ∪ S2) = 1.
– Show-Query : A can request as many times as he wants the HABS.Show
algorithm over the private key skuk

, the message m, a sub-set of his attributes
S ′k and a predicate Υi where Υi(S ′k) = 1 to get back a signature Σik.
During the second phase, C requests the adversary to provide a signature over
message m and predicate Υ . As such, A tries to compute a valid signature σ∗.
We say that the AC scheme is unforgeable if the probability that theHABS.Verify
procedure in the MU-Game and Col-Game returns accept is negligible.

Attribute-based Signatures for supporting Anonymous Certification 11

4.2.2 Privacy The privacy property covers the anonymity, the issue-show
and multi-show requirements, as defined in section 2. In this section, we define
three realistic privacy games – PP-Game, MS-Game and IS-Game – based on an
adversary A and a challenger C where A has only access to public data, except
in one game where he has access to credentials. Thus, A cannot run on his own
the HABS.Obtain ↔ Issue, or HABS.Show ↔ Verify algorithms, but has
to request the results of these algorithms to the challenger C which is responsible
for simulating the system procedures.

Definition 5. Privacy – We say that HABS satisfies the privacy property, if
for every PPT adversary A, there exists a negligible function ε such that:

Pr[ExpA
priv(1ξ) = 1] =

1

2
± ε(ξ)

where ExpA
priv is the security experiment against the privacy property, with

respect to PP-Game, MS-Game and IS-Game introduced hereafter.

We formally define our three games as follows: during the first phase, Phase I ,
C runs the HABS.Setup algorithm, gives the global public parameters params
to A and proceeds as follows:
– Keygen : the challenger C runs the HABS.KeyGen algorithm to get the pair
of keys (pkis, skis) and (pkuj

, skuj
) (j is for user uj , j ∈ {1, 2}). C sends the

public key of the issuer pkis to the adversary A.
– Issue : the challenger C runs the HABS.Issue algorithm over the public key
pkuj (j ∈ {1, 2}), and a set of attributes S (S=S1=S2). C gets the credential Cj ,
and only sends the set of attributes Sj to A.
– Show-Query : A can request C as many times as he wants, for getting the
result of HABS.Show algorithm applied on user uj (only index j is given to
C), with respect to some message mjk, predicate Υjk and set of attributes S ′jk
selected by A (where S ′jk ⊂ Sj). A gets back the presentation token Σjk.

Afterwards, during Phase II , A can select one of the following games:
– PP-Game – for proving the anonymity property. A selects j ∈ {1, 2}, and
generates a message m, a predicate Υ and a subset of attributes Sjk (k ∈ {1, 2})
such that Sjk ⊂ Sj , Sj1 6= Sj2, Υ (Sjk) = 1, and the triplet (m, Υ , Sjk) has never
been output during the Show-Query phase. A then sends m, Υ and Sjk to C
which chooses a random bit b ∈ {1, 2}, runs HABS.Show over m, Υ , attributes
Sjb, and skuj . C sends back to A the obtained presentation token Σjb. The
adversary A wins the game if he is able to guess the value of b, i.e. the set of
attributes Sjb used to derive the presentation token.
– MS-Game – for proving the multi-show property. The adversary A selects
j ∈ {1, 2} and generates a message m, a predicate Υ and a subset of attributes
S ′, such that S ′ ⊂ S, Υ (S ′) = 1. Note that the triplet (m, Υ , S ′) has never
been output during the Show-Query phase. A then sends m, Υ , and S ′ to the
challenger C which chooses a random bit b ∈ {1, 2}, runs HABS.Show over (m,
Υ , the attributes’ set S ′ and private key skub

. C sends back the presentation

12 Nesrine Kaaniche and Maryline Laurent

token Σb to A . The adversary A wins the game if he is able to guess the value
of b, i.e. the user ub having generated the presentation token.
– IS-Game – for proving the issue-show property. The adversary A generates a
message m, a predicate Υ such that Υ (S) = 1, such as the triplet (m, Υ , S) has
never been output during the Show-Query phase. A then sends m, Υ and S to
the challenger C which chooses a random bit b ∈ {1, 2}, runs HABS.Show for
user ub over m, Υ , S, and skub

. C sends back to A Σb and credentials C1 and
C2. The adversary A wins the game if he is able to guess the value of b, i.e. to
which credential Cb the presentation token refers to.

4.2.3 Anonymity Removal Our HABS system should fulfill the inspection
property meaning that the trace algorithm is able to return the right identity
of the actual user, for each verified tuple (m,Υ,Σ, pkis). As the unforgeability
subsection 4.2.1 already takes care of subcases of anonymity removal, this sec-
tion focuses only on the IA-Game leading an adversary A to successfully pass
the HABS.Show ↔ Verify procedure, while the inspector is unable to trace
the identity of the signature originator.
The IA-Game is formally defined as follows: during the first phase, Phase I ,
the challenger C runs the HABS.Setup and HABS.KeyGen algorithms to get
the key pairs of the issuer, the inspector and a user u1 indexed as 1. It gives
the public parameters params and the key pair (pku1 , sku1) to the adversary A
with a predicate Υ , and a random message m.
– Keygen : the adversary A runs the HABS.KeyGen algorithm, in order to get
the key pair (pku1

, sku1
).

– Issue : the adversary A requests C for getting the result of HABS.Issue algo-
rithm over the public key pku1 and a set of attributes S such as Υ (S) = 1. He
gets back the credential C.
– Show-Query : A can request as many times as he wants the HABS.Show
over the predicate Υ , the private key sku1

, the message m, and a sub-set of his
attributes Si where Υ (Si) = 1. Each request i results in a signature Σi.
Then, during Phase II , C requests the adversary to provide a valid but un-
traceable signature over message m and predicate Υ . As such, A runs ForgeProof
and the adversary A tries to compute a signature Σ∗, such as HABS.Verify
(m,Υ,Σ, pkis) = 1 and HABS.trace(Σ, skins) = ⊥ or k (k 6= 1).

We say that the AC scheme is resistant to inspection abuse attack if the
probability that the HABS.Inspec procedure in the IA-Game returns accept is
negligible.

5 Concrete Construction

In this section, we give a concrete attribute based signature scheme that fulfills
the features introduced in Section 3 and that can be used to design a secure
anonymous credential system.

Attribute-based Signatures for supporting Anonymous Certification 13

5.1 Mathematical Background

We first introduce the access structure in section 5.1.1. Then, in section 5.1.2,
we present the bilinear maps. Finally, we introduce security assumptions.

5.1.1 Access Structures

Definition 6. (Access Structure [2]) Let P = {P1, P2, · · · , Pn} be a set of
parties, and a collection A ⊆ 2{P1,P2,··· ,Pn} is called monotone if ∀B,C ⊆
2{P1,P2,··· ,Pn} : if B ∈ A and B ⊆ C then C ∈ A. An access structure is a collec-
tion A of non-empty subsets of {P1, P2, · · · , Pn} ; i.e. A ⊆ 2{P1,P2,··· ,Pn} \ {∅}.
The sets in A are called authorized sets, and the sets not in A are called unau-
thorized sets.

We note that in recent ABS schemes, the parties are considered as the attributes.

Definition 7. (Linear Secret Sharing Schemes (LSSS) [2]) A secret shar-
ing scheme Π over a set P = {P1, P2, · · · , Pn} is called linear (over Zp) if:

1. the share for each party forms a vector over Zp;
2. there exists a matrix M with l rows called the sharing generating matrix

for Π. For each i ∈ [1, l], we let the function ρ define the party labeling
the row i of the matrix M as ρ(i). When we consider the column vector
v = (v1, · · · , vk)T , where v1 = s ∈ Zp is the secret to be shared, and vt ∈ Zp,
where t ∈ [2, k] are chosen randomly, then M · v is the vector of l shares of
s according to Π. The share λi = (M · v)i belongs to the party ρ(i).

Suppose that Π is an LSSS for the access structure A. Let S be an authorized
set, such as S ∈ A, and I ⊆ {1, 2, ·, l} is defined as I = {i : ρ(i) ∈ S}. If {λi}i∈I
are valid shares of a secret s according to Π, there exist constants {wi ∈ Zp}i∈I ,
that can be computed in a polynomial time, such as

∑
i∈I λiwi = s [2].

We note that any monotonic boolean formula can be converted into LSSS repre-
sentation. Generally, boolean formulas are used to describe the access policy, and
equivalent LSSS matrix is used to sign and verify the signature. We must note
that the labeled matrix in Definition 7 is also called monotone span program [19].

Definition 8. (Monotone Span Programs (MSP) [19, 22]) A Monotone
Span Program (MSP) is the tuple (K,M, ρ, t), where K is a field, M is a l × c
matrix (l is the number of rows and c is the numbers of columns), ρ : [l] → [n]
is the labeling function and t is the target vector. The size of the MSP is the
number l of rows.
As ρ is the function labeling each row i of M to a party Pρ(i), each party can be
considered as associated to one or more rows. For any set of parties S ⊆ P, the
sub-matrix consisting of rows associated to parties in S is denoted MS.
The span of a matrix M , denoted span(M) is the subspace generated by the rows

14 Nesrine Kaaniche and Maryline Laurent

of M , i.e; all vectors of the form v ·M . An MSP is said to compute an access
structure A if:

S ∈ A iff t ∈ span(MS)

In other words:
A(S) = 1⇐⇒ ∃v ∈ K1×l : vM = t

5.1.2 Bilinear maps Let G1, G2, and GT be three cyclic groups of prime
order p. Let g1, g2 be generators of respectively G1 and G2. A bilinear map ê
is a map ê : G1 × G2 → GT satisfying the following properties: (i) bilinearity:
for all g1 ∈ G1, g2 ∈ G2, (ii) non-degeneracy: ê(g1, g2) 6= 1 and (iii) there is an
efficient algorithm to compute ê(g1, g2) for any g1 ∈ G1 and g2 ∈ G1.

5.1.3 Complexity assumptions For our construction, we consider the fol-
lowing complexity assumptions:

– q-Diffie Hellman Exponent Problem (q-DHE) – Let G be a group
of a prime order p, and g is a generator of G. The q-DHE problem is, given
a tuple of elements (g, g1, · · · , gq, gq+2, · · · , g2q), such that gi = gα

i

, where

i ∈ {1, · · · , q, q + 2, · · · , 2q} and α
R←− Zp, there is no efficient probabilistic

algorithmAqDHE that can compute the missing group element gq+1 = gα
q+1

.
– Computational Diffie Hellman Assumption (CDH) – Let G be a

group of a prime order p, and g is a generator of G. The CDH problem is,

given the tuple of elements (g, ga, gb), where {a, b} R←− Zp, there is no efficient
probabilistic algorithm ACDH that computes gab.

5.2 Overview

In this section, we review the procedures and algorithms of HABS. Our proposal
is composed of seven algorithms defined as follows:

– Setup: this algorithm takes as input the security parameter ξ and outputs
the public parameters params. As presented in Section 4.1, we suppose that
the public parameters includes the public key of the inspector and are con-
sidered as an auxiliary input to all HABS algorithms
Global Public Parameters params – the Setup algorithm first generates an
asymmetric bilinear group environment such as (p,G1,G2,GT , ê) where ê is
an asymmetric pairing function such as ê : G1 × G2 → GT . Random gen-
erators g1, {ui}i∈[1,U] ∈ G1 (i.e; U is the maximum number of attributes
supported by the span program) and g2 ∈ G2 are also generated, together
with α ∈ Zp. Let h1 := g1

α ∈ G1 and h2 := g2
−α ∈ G2. Let H be a crypto-

graphic hash function. The global parameters of our system are as follows:

params = {G1,G2,GT , ê, p, g1, {ui}i∈[1,U], g2, h1, h2,H}

We note that the secret key of the inspector is skins = α.

Attribute-based Signatures for supporting Anonymous Certification 15

– KeyGen – this algorithm outputs a pair of private and public keys for each
participating entity. In our proposal, each entity (i.e; issuer and user) has a
pair of private and public keys. That is, the user has a pair of keys (sku, pku)
where sku is randomly chosen in Zp and pku is the couple (Xu, Yu) =
(g1

sku , ê(g1, g2)sku). The issuer has a pair of secret and public keys (skis, pkis).
The issuer secret key skis is the couple defined as skis = (sis, xis) where sis
is randomly chosen in Zp and xis = g1

sis . The issuer public key pkis is the
couple (Xis, Yis) = (ê(g1, g2)sis , h2

sis).

– Issue: this algorithm is performed by the issuer in order to issue the cre-
dential to the user with respect to a pre-shared set of attributes S ⊂ S (S is
referred to as the attribute universe). The set of attributes S is defined as
follows: S = {a1, a2, · · · , aN}, where N is the number of attributes.
The Issue algorithm takes as input the public key of the user pku, a set
of attributes S and the private key of the issuer skis. It outputs the cre-

dential C defined as C = (C1, C2, C3, {C4,i}i∈[1,N]) = (xis · [Xu
H(S)−1

] ·
h1
r, g1

−r, g2
r, {uir}i∈[1,N]), where H(S) = H(a1)H(a2) · · ·H(aN), r is an

integer randomly selected by the issuer and ui
r presents the secret key as-

sociated to the attribute ai, where i ∈ [1, N].

– Obtain: this algorithm is executed by the user. It takes as input the creden-
tial C, the public key of the user pku, the public key of the issuer pkis and
the set of attributes S. The correctness of the obtained credential is given
by Equation 4, as follows:

ê(C1, g2)
?
= Xis · ê(XH(S)−1

u , g2) · ê(h1, C3) (1)

– Show: this algorithm is performed by the user, in order to authenticate
with the verifier. That is, when the user wants to access a service, he sends
a request to the verifier. As such, the verifier sends his presentation policy.
The presentation policy is given by a randomized message m, a predicate
Υ and the set of attributes that have to be revealed. The user has to sign
the message m with respect to the predicate Υ satisfying a sub-set of his
attributes S. As presented in Section 3, the message m should be different
for each authentication session.
In the following, we denote by SR, the set of attributes revealed to the
verifier, and SH the set of non-revealed attributes, such as S = SR ∪ SH .
Let the signing predicate Υ can be represented by an LSSS access structure
(M,ρ), i,e; M is an l×k matrix, and ρ is an injective function that maps each
row of the matrix M to an attribute. The Show algorithm takes in input
the user secret key sku, the credential C, the attribute set S, the message m
and the predicate Υ such that Υ (S) = 1. The showing process is as follows:
1. The user should first blind his credential C in the following way: the user

first selects at random an integer r′ ∈ Zp and sets C ′1 = C1 ·h1r
′

= xis ·
Xu
H(S)−1

·h1r ·h1r
′

= xis ·Xu
H(S)−1

·h1r+r
′
, C ′2 = C2 ·g1−r

′
= g1

−(r+r′)

and C ′3 = C3 · g2r
′

= g2
r+r′ .

16 Nesrine Kaaniche and Maryline Laurent

Then, the user blinds the secret value associated to each attribute re-
quired in the access policy such that: ∀ai ∈ S, u′i = ui

r · uir
′

= ui
r+r′ .

Thus, the new blinded credential C ′ presents the tuple (C ′1, C
′
2, C

′
3, C

′
4,i) =

(xis ·Xu
H(S)−1

· h1r+r
′
, g1
−(r+r′), g2

r+r′ , ui
r+r′).

2. As the user’s attributes S satisfies Υ , the user can find a vector v =
(v1, · · · , vl) that satisfies vM = (1, 0, · · · , 0) according to Definition 8.

3. For each attribute ai, where i ∈ [1, l], the user first computes ωi = C ′3
vi .

Then, he calculates B =
∏l
i=1(u′ρ(i))

vi .

4. Afterwards, the user selects a random rm and computes the couple
(σ1, σ2) = (C ′1 ·B · g1rmm, g1rm).
We note that the user may not have the secret value of each attribute
mentioned in Υ . But, in this case, vi = 0 and thus the value is not needed.

5. Finally, the user computes an accumulator on non-revealed attributes,

using his secret key such as A = g2
skuH(SH)−1

rm . Then, he outputs a pre-
sentation token Σ, which mainly includes the signature of the message m
with respect to the predicate Υ such that Σ = (Ω, σ1, σ2, C

′
1, C

′
2, A,SR).

We note that Ω = {ω1, · · · , ωl} is the set of committed elements’ values
of the vector v, based on the credential’s item C ′3.

– Verify: this algorithm is performed by the verifier. It takes as input the
public key of the issuer pkis, the presentation token Σ, the set of revealed
attributes SR, the message m and the signing predicate Υ corresponding to
(Ml×k, ρ). It outputs a bit b ∈ {0, 1}. The verifier proceeds as follows:
First, the verifier checks the received set of revealed attributes SR, and com-
putes an accumulator AR such as AR = σ2

H(SR)−1

.
Then, the verifier chooses at random k − 1 values from Zp, denoted by
µ2, · · · , µk respectively and sets the vector µ = (1, µ2, · · · , µk).

Consequently, the verifier calculates τi =
∑k
j=1 µjMi,j where Mi,j is an el-

ement of the matrix M . Finally, the verifier checks the correctness of the
received presentation token (Equation 5):

ê(σ1, g2)
?
= Xisê(AR, A)ê(C ′2, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2, g2

m) (2)

– Inspec: this algorithm is performed by the inspector, the authority in pos-
session of the secret skins. The inspector can decrypt Elgamal ciphertext
(C ′1, C

′
2) to retrieve $∗ = C ′1·C ′2

α
. Then, the inspector uses the issuer table in

order to retrieve an entry (uj
∗, pkj , Yuj

H(S)−1

), such that ê($∗, g2)·[Xis]
−1 =

ê(Xu
H(S)−1

, g2). The proof of validity of such an inspection procedure is done
by proving that the decryption is correctly done, using the knowledge of skins
(Equation 6).

ê($∗, g2) ·Xis
−1 ?

= ê(Xu
−H(S), g2) (3)

Attribute-based Signatures for supporting Anonymous Certification 17

6 Security Analysis

In this section, we first prove that HABS provides the security requirements
defined in Section 4.2. Then, we discuss an extension to support multiple issuers.

6.1 Security of the Main Scheme

The security of our main scheme HABS relies on the following Theorems:

Theorem 1. Correctness – HABS is correct if for all (params)← Setup(ξ),
all pair of public and private keys {(pkis, skis), (pku, sku)} ← KeyGen(params),
all attribute sets S, all credentials C ← Issue (S, skis, pku), all claiming pred-
icates Υ such as Υ (S) = 1, all presentation tokens Σ ← Show (C, sku,m, Υ)
and all proofs $ ← trace(skins, σ, pkis), we have Obtain (C, sku, pkis,S) = 1,
Verif (Σ,m, Υ, pkis) = 1 and judge($) = 1.

Theorem 2. Unforgeability – HABS satisfies the unforgeability requirement,
under the CDH, q-DHE and DLP assumptions.

Theorem 3. Privacy – HABS achieves the privacy requirement, with respect
to the anonymity and unlinkability properties.

Theorem 4. Anonymity Removal – Our attribute based credential system
HABS achieves the inspection feature, with respect to IA-Game.

6.1.1 Correctness The proof of Theorem 1 relies on the correctness of the
following three Equations:

ê(C1, g2)
?
= Xis · ê(XH(S)−1

u , g2) · ê(h1, C3) (4)

ê(σ1, g2)
?
= Xisê(AR, A)ê(C ′2, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2, g2

m) (5)

ê($∗, g2) ·Xis
−1 ?

= ê(Xu
−H(S), g2) (6)

where $∗ is such that $∗ = C ′1C
′
2
skins .

First, the correctness of Equation 4 guarantees the correctness of the obtained
credential. It is easy to check using the bilinearity property of pairing functions
as follows:

ê(C1, g2) = ê(xis · [Xu
H(S)−1

] · h1r, g2)

= ê(g1
sis , g2) · ê(Xu

H(S)−1

, g2) · ê(h1r, g2)

= ê(g1, g2)sis · ê(Xu
H(S)−1

, g2) · ê(h1, g2r)

= Xis · ê(Xu
H(S)−1

, g2) · ê(h1, C3)

18 Nesrine Kaaniche and Maryline Laurent

Second, for the correctness of the presentation token, the verifier checks if the
received token Σ = (Ω, σ1, σ2, C

′
1, C

′
2, A,SR) is a valid signature of the message

m, based on the predicate Υ (corresponding to (Ml×k, ρ)). As such, the verifier
first checks the set of revealed attributes SR. Note that the verification process
has to be stopped if the verification of SR was rejected. Otherwise, the verifier
computes an accumulator AR of the revealed attributes’ values, using σ2, such
as AR = σ2

H(SR)−1

, where H(SR) =
∏
ai∈SR H(ai)

−1.
To prove the correctness of Equation 5, we first express σ1 as follows:

σ1 = C ′1 ·B · g1rmm

= C ′1 ·
l∏
i=1

(u′ρ(i))
vi · g1rmm

= xis ·Xu
−H(S) · h1r+r

′
·
l∏
i=1

(uρ(i))
(r+r′)vi · g1rmm

Now, we provide the proof of correctness of the presentation token verification. In
the following proof, we denote (r+r′) by R, and the first side of Equation 5 by s.

s = ê(xis ·XuH(S)−1

· h1
r+r′ ·

l∏
i=1

(uρ(i))
Rvi · g1rmm, g2)

= ê(xis, g2) · ê(XuH(S)−1

, g2) · ê(h1
R, g2) · ê(g1rmm, g2) · ê(

l∏
i=1

uρ(i)
Rvi , g2)

= ê(g1, g2)sis · ê(XuH(SR∪SH)−1

, g2) · ê(h1
R, g2) · ê(σ2, g2

m) ·
l∏
i=1

ê(uρ(i)
Rvi , g2)

= Xis · ê([g1sku]H(SR)−1H(SH)−1

, g2) · ê(g1−R, h2) · ê(σ2, g2
m) ·

l∏
i=1·Xis

−1

ê(uρ(i), g2
Rvi)

= Xis · ê(g1H(SR)−1

, [g2
sku]H(SH)−1

) · ê(C′2, h2) · ê(σ2, g2
m) ·

l∏
i=1

ê(uρ(i), ωi)

= Xis · ê(AR, A) · ê(C′2, h2) ·
l∏
i=1

·ê(uρ(i)h1
τi , ωi) · ê(σ2, g2

m)

We note that τi =
∑k
i=1 µjMi,j , the last equality is derived by Definition 8,

such as
l∑
i=1

τi(viR) = R

l∑
i=1

τivi = R · 1 = R

As such, the term ê(h1
R, g2) can be represented as ê(h1

R, g2) =
∏l
i=1 ê(h1

Rτi , g2
Rvi).

Finally, for the correctness of our judge algorithm, we consider the proof
of validity of the inspection procedure proving that the El-Gamal decryption

Attribute-based Signatures for supporting Anonymous Certification 19

algorithm has been correctly done, using the knowledge of skins, as presented in
Equation 6. The correctness of Equation 6 is as follows:

ê($, g2) ·Xis
−1 = ê(C ′1C

′
2
skins , g2) ·Xis

−1

= ê([xis ·Xu
H(S)−1

· h1R] · g1−R
skins

, g2) ·Xis
−1

= ê(xis, g2) · ê(Xu
H(S)−1

· g1αR · g1−R
α
, g2) ·Xis

−1

= ê(Xu
H(S)−1

, g2)

6.1.2 Unforgeability Sketch of proof. We prove that our credential system
HABS satisfies the unforgeability requirement using an absurdum reasoning.
We suppose that an attacker A can violate the statements of the Theorem 2 by
reaching the advantage Pr[ExpA

unforg(1ξ) = 1] ≥ ε(ξ).
Let us first start by the MC-game. Given the public-private key of the user

(pku, sku), A tries to forge a credential C, while relying on several sessions.
Obviously, A tries a forgery attack against the CDH assumption, considering
that the credential element C1 is a product of an accumulator over the set of user
attributes, the secret key of the issuer xis and a randomization of the public key
of the inspector h1. Knowing that this randomization is required for deriving the
remaining credential elements, A is led to break the CDH assumption. The MC-
game is then considered with respect to the CDH-assumption. Recall that the
complexity of the CDH assumption has been studied in [4] and it is demonstrated
to be hard to solve; i.e. a (t, ε) CDH group is a group for which the Adv(A, t) ≤ ε
for every PPT adversary running in a time t.
Now, we suppose that the adversary A can violate the CDH assumption by
reaching an advantage Adv(A, t) ≥ ε and show the existence of an attacker B
that can reach an advantage Adv(B, t′) ≥ ε′.
Intuitively, B relies on the capabilities of A to forge credentials C obtained from
interactions with C in the MC-Game.
Since A and B algorithms are based on coin tosses, the first condition for B to
succeed is that it does not abort the MC-game before A. In [1], this probability
has been shown to be 1

e if the probability for the coin flipping to be 0 is 1
ξc+1 ,

where ξc is the number of credential queries. The other condition of the attacker
is to be able to identify the value of r or to extract the private key xis of the
issuer, for which the credential has been forged by the A. After a time t′, this
probability is equal to 1

ξc+1 . This shows that the attacker B can violate the CDH-
assumption with a probability equal to ε

e(ξc+1) which conflicts the fact that G1

is a (t, ε)-CDH group.
Another desirable property of our HABS construction is the presentation

token unforgeability, which is based on MU-Game and Col-Game. The proof
directly goes from the unforgeability property of the ABS scheme and the se-
curity of the commitment algorithm, required for proving the possession of all
non-revealed attributes SH with respect to the presented credential C.
We thus prove that our construction is unforgeable under the selective predi-
cate attack (i,e; MU-Game, Col-Game), assuming that the q-DHE holds in G1.

20 Nesrine Kaaniche and Maryline Laurent

On one side, for the MU-Game, A relies on several Show-Query sessions to
conduct to forgery attack against the unforgeability property of the ABS signa-
ture, referred to as presentation token. Note that our construction inherits the
unforgeability property from Waters’ CP-ABE scheme [27], which is proven se-
cure under the assumption of the decisional q-Bilinear Diffie Hellman Exponent
(q-BDHE) problem, formalized by Boneh et al. in [3]. Thus, based on [25, 27],
the advantage of an algorithm B, against the q-DHE assumption, is equal to
Adv(B, t) = O(1

ξs+1), where ξs is the number of showing queries the adversary
A can make. Similarly, B can violate the q-DHE problem with a probability
ε′ ≥ ε · O(1

ξs+1), which contradicts the q-DHE security assumption.
Consequently, we can prove the resistance of HABS against a collusion attack
between two malicious users, considering the Col-Game. That is, this property
is ensured as it is considered as sub-case of the unforgeability requirement of an
ABS scheme.
On the other side, the security of our commitment scheme, considered in Show
algorithm for proving the possession of all attributes certified by the issuer, stems
from the hardness of the DLP assumption. That is, it can be considered as the
Pederson commitment scheme, which is unconditionally hiding and has been
proven secure under the DLP assumption. Additionally, we have to note that
HABS is resistant against replay attacks, thanks to the randomness appended
by the challenger, for each request.

As such, our HABS construction satisfies the unforgeability requirement,
under the q-DHE, CDH and DLP assumptions, with respect to MC-Game, MU-
Game and Col-Game.

6.1.3 Privacy Sketch of proof. Theorem 3 relies on three security games,
namely PP-Game, MS-Game and IS-Game. That is, the attacker A tries to dis-
tinguish between two honestly derived presentation tokens for different settings
with respect to every security game. As such, for the PP-Game, since a new
presentation token for the same message m and the same access predicate Υ is
computed from randoms, generated by C, both presentation tokens are identi-
cally distributed in both cases. Thus, we can easily show that an ABS signature
(presentation token) created by using S1 can be also generated using S2. As
such, it follows the probability of predicting b is 1

2 .
Similarly, the MS-Game relies also on a left-or-right oracle, where an attacker
A cannot distinguish the oracle’s outputs better than a flipping coin. In fact,
both presentation tokens for the same message m and the same access predicate
Υ sent to different users, such as Υ (Su1) = Υ (Su2) = 1, are statistically indis-
tiguishable. As such, it follows the probability of predicting b is 1

2 .
Then, an attacker A, against the issue-show property, has an access to the Issue
oracle for generating users’ credentials. The IS-Game assumes that the attacker
also knows the public keys of the requesting user. But, since an honest user pro-
duces a different presentation token for each presentation session HABS.Show,
thanks to the randomness introduced by the user while generating the ABS
signature. As such, the A cannot distinguish two different presentations tokens

Attribute-based Signatures for supporting Anonymous Certification 21

with a probability such Adv(A, t) 6= 1
2 + ε.

Therefore, our scheme is unlinkable, satisfying as well the privacy property. The
reason is that the different entities, namely, issuers, users and verifiers, have to
generate randomness for each procedure of the HABS construction.

6.1.4 Anonymity Removal Sketch of proof. Let A be a successful attacker
against the inspection property, with respect to the IA-Game.
First, if the inspector is able to conclude, then a valid presentation token has been
produced during the attack on a new u∗, which contradicts the unforgeability
property of our HABS construction. More precisely, we have to extract the
underlying user u∗, and then as we know the private key sku∗ , we extract a valid
presentation token Σ on u∗ and win the unforgeability game.
Second, we prove the resistance of our construction against such an attacker,
based on the security of El-Gamal encryption scheme which is proven to be
computational-hiding. As such, the probability of success for A is negligible,
such as Adv(A, t) ≤ ε. Thus, our scheme satisfies the inspection feature.

6.2 Homomorphism to Support Multiple Issuers

As presented in Section 3.3, when a user requests multiple authorities to issue
credentials with respect to his attributes, the different sessions are linked through
the user’s public key. To satisfy the unlinkability property of AC schemes between
several issuance sessions, a novel ABS issuance procedure has to be designed,
leading us to extend our proposal to support pseudonym systems and public key
masking during the issuance procedure, presented hereafter. Also our construc-
tion is demonstrated to support an homomorphism property helpful for defining
a new HABS.agg algorithm, and a modified HABS.verify algorithm.

Assumptions – Extra assumptions are requested for the support of multi-
ple issuers: (i) all the issuing authorities AAj share the same public parame-
ters params, but have distinct key pairs (skisj , pkisj , (ii) the public parameters
params include the secrets ui relative to the attributes that might be certified by
diverse issuers, (iii) the user is provided with one pseudonym nymj per authority,
and enables the user to authenticate to the issuers with different identities. For
consistency among obtained credentials (i.e. C1), each pseudonym nymj should
rely on the private key of the user and the related issuing authority AAj and
the HABS.issue should be extended with works of Chase and Chow [10] and
Chase et al. [11] for masking the public key of the user.

Homomorphism Construction – For simplicity reasons, the reasoning
next is limited to two issuers ISi and ISj , but it can be easily extended to
n (different) issuer(s), where n ≥ 2. Let us then assume that a user receives
two signed sets of attributes from two different attribute authorities ISi and
ISj . The user receives Ci = HABS.Issue (skis

(i),Si) and Cj = HABS.Issue

(skis
(j),Sj), from ISi and ISj , respectively. The sets of attributes are repre-

sented by Si = {ai,1, · · · , ai,ni
} and Sj = {aj,1, · · · , aj,nj

}, where nk is the

22 Nesrine Kaaniche and Maryline Laurent

number of attributes in the set Sk and k ∈ {i, j}.
The idea is to aggregate credentials Ci and Cj to form a new CR covering the
attributes S = Si ∪ Sj . We define the agg algorithm as follows:
agg – this algorithm takes as input two credentials Ci and Cj corresponding
to the sets of attributes Si and Sj respectively, and the public keys of issuers
pkis

i and pkis
j . It outputs a resulting signed commitment CR, where CR is a

signature over the union of the two sets of attributes Si and Sj . We note that
the agg algorithm has to fulfill the correctness and homomorphism properties.
Recall that the credential Ck, obtained from the issuer ISk, is denoted by Ck =

(C1, C2, C3, {Cl,4}l∈[1,nl])
(k) = (xisk [Xu

H(Sk)−1

]h1
rk , g1

−rk , g2
rk , {ulrk}l∈[1,N]),

where k ∈ {i, j} and nl is the number of certified attributes by the issuer ISk.

Let us define the following theorem defining the aggregation algorithm:

Theorem 5. Let us consider the algorithms HABS.Issue, HABS.Obtain,
HABS.Show and HABS.Verify defined in Section 5.2. Let HABS.agg be the
aggregation algorithm such as:

agg(C(i), C(j),Si,Sj , pkisi, pkisj) = HABS.Issue(pku,Si ∪Sj), a.skisi + b.skisj)
(7)

where a and b are two integers that might be computed by the user based on the
union set Si ∪ Sj.

That theorem and homomorphism property come directly from the following
Lemma 1 which expresses H(Si ∪ Sj) based on H(Si) and H(Sj) in order to

write C{1,Si∪Sj} with respect to C1
(i) and C1

(j).

Lemma 1. Given the hash function H and for every sets of attributes Si and Sj,

there exist two integers a and b, such that H(Si ∪ Sj)−1 = aH(Si)
−1+bH(Sj)

−1.

Proof. Referring to the Bezout’s lemma, the gcd satisfies the following property:

gcd(H(Si),H(Sj)) = bH(Si) + aH(Sj) (8)

where a and b are two non zero integers (a and b are called Bezout coefficients).
In addition, the gcd and lcm satisfy Equation 9 such that

gcd(H(Si),H(Sj)) ∗ lcm(H(Si),H(Sj)) = H(Si)H(Sj) (9)

As such, using Equation 9, we have:

lcm(H(Si),H(Sj))
−1

=
gcd(H(Si),H(Sj))

H(Si)H(Sj)
=
bH(Si) + aH(Sj)

H(Si)H(Sj)
= bH(Sj)

−1+aH(Si)
−1

(10)
On the other side, we write H(Si ∪ Sj) as follows:

H(Si∪Sj) =
∏

ak∈Si∪Sj

H(ak) = lcm(
∏
ak∈Si

H(ak),
∏
ak∈Sj

H(ak)) = lcm(H(Si),H(Sj))

(11)

Attribute-based Signatures for supporting Anonymous Certification 23

6.3 Proof of Homomorphism

In order to prove the homomorphism property with respect to the union opera-

tor, we first express [C1
(i)]a · [C1

(j)]b, denoted by RS, as a function of Si ∪ Sj ,
skisi and skisj , as follows:

RS = [xisi · [Xu
H(Si)−1

] · h1
ri]a · [xisj · [Xu

H(Sj)−1

] · h1
rj]b

= g1
a.sisi+b.sisj · [XuaH(Si)−1+bH(Sj)−1

] · h1
a.ri+b.rj

= g1
a.sisi+b.sisj · [XuH(Si∪Sj)−1

] · h1
a.ri+b.rj

Similarly, we can write the elements of the resulting credential CR, such that
CR = (C1,Si∪Sj , C2,Si∪Sj , C3,Si∪Sj , {Cl,4,Si∪Sj}l∈[1,N]), where C1,Si∪Sj = [C1

(i)]a·
[C1

(j)]b = xisi
a · xisj b · [Xu

H(Si∪Sj)] · h1a.ri+b.rj , C2,Si∪Sj = [C2
(i)]a · [C2

(j)]b =

g1
−(a.ri+b.rj) C3,Si∪Sj = [C3

(i)]a · [C3
(j)]b = g2

a.ri+b.rj and {Cl,4,Si∪Sj}l∈[1,N] =

{ula.ri+b.rj}l∈[1,N], (i.e; N is the maximum number of attributes).
The form of the aggregated credential C1,Si∪Sj , C2,Si∪Sj , C3,Si∪Sj , {Cl,4,Si∪Sj}l∈[1,N]

is similar to the individual credentials like Ci, thus leading to the aggregated
presentation token ΣR by applying exactly the same HABSShow algorithm.
The obtained ΣR is as follows: ΣR = (ΩR, σ1,R, σ2,R, C

′
1,R, C

′
2,R, A,SR).

6.4 Proof of Correctness

We show how the verifier can rely on the aggregated presentation token ΣR, to
authenticate the user (u), with respect to his access policy Υ , such as Υ (Si∪Sj) =
1, where Sk presents the set of attributes certified by the issuer ISk, k ∈ {i, j}.
Using the properties of the pairing function ê, we can easily prove the correctness
of Equation 12:

ê(σ1,R, g2)
?
= Xisi

aXisj
bê(AR, A)ê(C′2,R, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m) (12)

where a and b are two integers as defined in Lemma 1.
By equivalence to Equation 5, we can consider that D = a.ri + b.rj + r′ presents
the quantity R = r+ r′. Thus, for proving the correctness of Equation 12, let us
denote by s the quantity ê(σ1,R, g2):

s = ê(xisi
axisj

b ·XuH(Si∪Sj) · h1
D ·

l∏
i=1

(uρ(i))
Dvi · g1rmm, g2)

= ê(xisi , g2)a · ê(xisj , g2)b · ê(XuH(Si∪Sj), g2) · ê(h1
D, g2) · ê(g1rmm, g2) · ê(

l∏
i=1

uρ(i)
Dvi , g2)

= Xisi
a ·Xisj

b · ê(g1H(SR)−1

, [g2
sku]H(SH)−1

) · ê(C′2,R, h2) · ê(σ2, g2
m) ·

l∏
i=1

ê(uρ(i), ωi)

= Xisi
aXisj

bê(AR, A)ê(C′2,R, h2)

l∏
i=1

ê(uρ(i)h1
τi , ωi)ê(σ2,R, g2

m)

24 Nesrine Kaaniche and Maryline Laurent

This proves the correctness of our HABS.Verify, while considering a multi-
issuers setting according to the agg algorithm.

7 Comparison

In this section, we give a quantitative comparison between related works and
our anonymous credential system based on attribute based signatures HABS.
That is, we give in Table 1 several elements of comparison between our con-
struction and most closely related anonymous credential systems, with respect
to processing and communication overhead.

Table 1. Comparisons between HABS and the related works

Scheme Keys (N attributes per credential) Issuance Procedure
Groups params Credential Size User Issuer Bw.

[18] Zn : RSA: 1024 O(N) O(1) ' 2600 + 1024 O(N): Zn
[23] p = 1024 : q = 128 O(N) O(1) 3 · |Gq|+ 128 O(N): Gq O(1)
[9] Fp : |G1| ' 170 O(1) O(N) (2N + 2) · (|G1|+ |Zp|) O(1) O(N) : G1

HABS Fp : |G1| ' 170 O(N) O(N) (N + 3) · |G1| O(1) O(N) : G1

Presentation Procedure
User Verifier Bw. User Verifier Bw. User Verifier Bw.

single-use single-use l-out-of-N attributes K-use N attributes

[18] O(N): Zn O(1) O(N) O(N − l) O(N): Zn O(1)
[23] O(N) O(N) O(l) O(N) O(KN): Zq O(KN)
[9] O(1) 2 · O(N) O(N) O(1) 2 · O(N) O(l) O(N) 2 · O(N) O(N)

HABS O(k)∗ O(k)∗ O(k)∗

The first column underlines the algebraic structure for each AC system. It
may be an RSA environment [18], Zn with a subgroup of order q [23], or bilinear
groups ê(G1,G2) over a base field Fp [9].
We denote by N the maximum number of attributes issued by an authority into
a single credential. The bandwidth, for issuing and showing protocols, presents
the exchanged quantity of data during protocols’ running.
The credential size presents the size of public keys or a certificate. The mem-
ory consumption for credentials is given with asymptotic complexity and some
concrete size in bits. Table 1 also details the processing complexity at the is-
suer, user and verifier sides, while considering the number of operations in the
underlying algebraic structures. As presented before, Table 1 shows that our
HABS is a direct signature, and thus the issuance procedure is rather interest-
ing, compared to IBM Identity Mixer [18] and U-Prove [23] solutions. The [9]
construction presents also a direct sanitizable signature applications for anony-
mous credential systems. However, HABS presents an interesting overhead, for
the showing protocol, compared to existing solutions. That is, the computation
and communication overhead depends only on attributes required for satisfying
the access policy of the verifier, referred to as k in Table 1, whereas we denote
by K the set of attributes that have to be disclosed with respect to presentation

Attribute-based Signatures for supporting Anonymous Certification 25

policy of the verifier. In addition, our attribute-based construction HABS bring
multiple-use credentials, likely as [9,18] with an interesting processing overhead,
compared to the UProve’s technology which is a single-use credentials’ solution.

8 Conclusion

In this paper, we proposed a new way to design anonymous credential systems,
based on the use of attribute based signatures. Our anonymous certification sys-
tem HABS enables a user to anonymously authenticate with a verifier, while
providing only required information for the service provider, with respect to
its presentation policy. Indeed, HABS supports a flexible selective disclosure
mechanism with no-extra processing cost, which is directly inherited from the
expressiveness of attribute based signatures for defining access policies.
Additionally, our proposal is deliberately designed to ensure unlinkability be-
tween the different sessions while preserving the anonymity of the user. An
extension of HABS is also detailed to preserve users’ privacy with ensuring
the unlinkability between multiple issuers. Finally, a quantitative comparison of
HABS with most closely-related technologies shows the interesting processing
and communication cost of our construction, especially due to the application
of direct attribute based signatures for the issuing protocol.

References

1. J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters.
Computing on authenticated data. In Proc. of TCC, LNCS, 2012.

2. A. Beimel. Secret sharing and key distribution. In Research Thesis, 1996.
3. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with

constant size ciphertext. EUROCRYPT’05, 2005.
4. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In

Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’01,
2001.

5. S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge, MA, USA, 2000.

6. J. Camenisch, S. Krenn, A. Lehmann, G. L. Mikkelsen, G. Neven, and M. O.
Pederson. Scientific comparison of abc protocols: Part i – formal treatment of
privacy-enhancing credential systems, 2014.

7. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. EUROCRYPT ’01, 2001.

8. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
SCN, 2002.

9. S. Canard and R. Lescuyer. Protecting privacy by sanitizing personal data: A new
approach to anonymous credentials. ASIA CCS ’13, 2013.

10. M. Chase and S. S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In In Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages 121–130, 2009.

26 Nesrine Kaaniche and Maryline Laurent

11. M. Chase, M. Kohlweiss, S. Meiklejohn, and A. Lysyanskaya. Malleable signatures:
Complex unary transformations and delegatable anonymous credentials, 2013.

12. D. Chaum. Blind signatures for untraceable payment. In Advances in Cryptology:
Proceedings of Crypto’82, 1982.

13. A. El Kaafarani, E. Ghadafi, and D. Khader. Decentralized traceable attribute-
based signatures. In Topics in Cryptology CT-RSA 2014. 2014.

14. C. Europe. Proposal for a regulation of the european parliament and of the council
on the protection of individuals with regard to the processing of personal data and
on the free movement of such data. In General Data Protection Regulation, January
2016, 2016.

15. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Proceedings on Advances in cryptology—CRYPTO ’86.

16. J. Herranz, F. Laguillaumie, B. Libert, and C. Rafols. Short attribute-based sig-
natures for threshold predicates. In Topics in Cryptology – CT-RSA 2012. 2012.

17. W. House. Enhancing online choice, efficiency, security, and privacy. In National
Strategy for Trusted Identities in Cyberspace, April 2011, 2011.

18. IBM. Ibm identity mixer, idemix. 2012.
19. M. Karchmer and A. Wigderson. On span programs. In In Proc. of the 8th IEEE

Structure in Complexity Theory, 1993.
20. M. Langheinrich. Privacy by design - principles of privacy-aware ubiquitous sys-

tems. UbiComp ’01, 2001.
21. J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren. Attribute-based signature and its

applications. ASIACCS ’10, 2010.
22. H. K. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. Cryp-

tology ePrint Archive, Report 2010/595, 2010.
23. Microsoft. U-prove community technology. 2013.
24. T. Okamoto and K. Takashima. Efficient attribute-based signatures for non-

monotone predicates in the standard model. PKC’11, 2011.
25. S. Schage and J. Schwenk. A cdh-based ring signature scheme with short signatures

and public keys. FC’10, 2010.
26. S. F. Shahandashti and R. Safavi-Naini. Threshold attribute-based signatures and

their application to anonymous credential systems. AFRICACRYPT ’09, 2009.
27. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization. PKC’11, 2011.
28. Y. Zhang and D. Feng. Efficient attribute proofs in anonymous credential using

attribute-based cryptography. In Proceedings of the 14th International Conference
on Information and Communications Security, ICICS’12, 2012.

	ABSAC
	Introduction
	Anonymous Credentials
	Attribute based Signatures for Anonymous Credentials
	Attribute-based Signatures (ABS)
	Security Properties of Attribute based Signatures
	Bridging the gap between ABS and AC

	Our New Anonymous Certification Scheme
	System Model
	Security Model
	Unforgeability
	Privacy
	Anonymity Removal

	Concrete Construction
	Mathematical Background
	Access Structures
	Bilinear maps
	Complexity assumptions

	Overview

	Security Analysis
	Security of the Main Scheme
	Correctness
	Unforgeability
	Privacy
	Anonymity Removal

	Homomorphism to Support Multiple Issuers
	Proof of Homomorphism
	Proof of Correctness

	Comparison
	Conclusion

