
Routing Tables Building Methods for Increasing
DNS(SEC) Resolving Platforms Efficiency

Emmanuel Herbert, Daniel Migault,
Stephane Senecal and Stanislas Francfort

France Telecom R&D/Orange Labs
38-40 rue du Général Leclerc

92130 Issy-les-Moulineaux, France
{firstname.lastname}@orange.com

Maryline Laurent
Institut Mines-TELECOM, TELECOM SudParis,

UMR CNRS 5157 SAMOVAR
9 rue Charles Fourier
91000 Evry, France

maryline.laurent@telecom-sudparis.eu

Abstract—This paper proposes to use optimization and ma-
chine learning methods in order to develop innovative tech-
niques for balancing the DNS(SEC) traffic according to Fully
Qualified Domain Names (FQDN), rather than according to
the IP addresses. With DNS traffic doubling every year and
the deployment of its secure extension DNSSEC, DNS resolving
platforms require more and more resources. A way to cope
with these increasing resources demands is to balance the DNS
traffic among the DNS platform servers based on the queried
FQDNs. Several methods are considered to build a FQDN based
routing table: mixed integer linear programming (MILP), a K-
means clustering algorithm and a heuristic scheme. These load
balancing approaches are run and evaluated on real DNS traffic
data extracted from the operational IP network of an Internet
Service Provider (ISP) and they result in a difference of less than
2% CPU between the servers of a platform.
Keywords: DNS, DNSSEC, optimization, machine learning, rou-
ting, load balancing.

I. INTRODUCTION

Domain Name System (DNS) is the service which makes
possible network communications based on names, by binding
an Internet Protocol (IP) address to a Fully Qualified Domain
Name (FQDN). As such, end users rely on a DNS resolving
platform to determine the IP address of the requested target.
The DNS architecture is composed of Authoritative Servers,
which are DNS servers hosting the IP addresses of the queried
web sites. Because Authoritative Servers would not be able to
process all end users’ queries, the DNS architecture introduces
Resolving Servers which cache the responses during a given
number of seconds called Time To Live (TTL). Internet Service
Providers (ISPs) manage such servers for their end users. When
a Resolving Server receives a DNS query and if the response
is already cached, then the Resolving Server returns the cached
response. Caching mechanism provides faster responses to the
end users and reduces the traffic load on the DNS Authoritative
Servers. The whole DNS architecture is described in details in
[1].
As DNS traffic doubles every year and as the DNS security
extension DNSSEC is deployed, DNS resolving platforms are
more and more resource demanding.
Today’s load balancers practice xoring operation over the DNS
packet’s source and destination IP addresses [2] to balance the
DNS traffic on the platform. This load balancing technique,
referred to as XOR in this paper, induces that most of the
popular FQDNs are resolved by each DNS Resolving Server

of the platform.
One way to reduce the load on the servers of the platform
is thus to decrease the number of resolutions. That is, as
presented in [3] and [4], balancing the DNS traffic according to
the queried FQDNs rather than according to the IP addresses.
This implies that more DNS requests are resolved by the
caching mechanism, thus leading to fewer signature checking
operations for DNSSEC, and a 1.32 more efficient architecture.
This load balancing algorithm is referred to as FQDN in the
following.
The FQDN load balancing can be implemented by hashing the
queried FQDN (e.g. using SHA1 [5] as a hash function) but
this is not sufficient as it results in an unbalanced distribution
among the servers. The contribution of the paper lies in the

(a) Popularity (b) Cumulative Traffic Distribution

Fig. 1: Ranked FQDNs’ distribution

development of methods for building FQDN-based routing
tables for load balancing purpose in an ISP operational context.

II. RELATED WORKS

Performing load balancing for the DNS traffic is a crucial
task to be implemented on the servers of resolving platforms.
General load balancing techniques are introduced in [6]. Pre-
vious works concerning load balancing techniques address
mainly the problems faced on web servers, like in [7]. Focusing
on DNS service, and especially considering problems faced
by ISPs in the telecommunications industry, it is possible
to highlight two complementary references: [4] and [8]. In
[4], a FQDN load balancing technique, based on discrete
optimization, is proposed. Reference [8] aims at optimizing
the DNS service by addressing its architecture. In this paper,



we propose three methods for implementing a FQDN-based
load balancing for the DNS traffic, which are derived from
mathematical programming, machine learning (clustering), and
heurisitic optimization.

III. BUILDING ROUTING TABLE

In this section, we focus on the few costly FQDNs of the
DNS traffic. There are only few costly FQDNs, as depicted in
figure 1a. As shown on this figure, the distribution of FQDNs
looks like a Zipf law [9] and [10]. This is why we decide to
split FQDNs encountered into 2 parts: FQDN+, the set of
the most requested FQDNs for which we can take advantage
of caching mechanism and FQDN−, the rest of FQDNs. This
section investigates different ways to build a routing table for
the FQDNs belonging to FQDN+, namely how to assign each
of the considered FQDNs to a unique server. The challenge is
to balance the time required to build the routing table with
the number of entries of the routing table. FQDNs that are
not in the routing table are assigned to the servers according
to a hash function. A first method is based on Mixed Integer
Linear Programing (MILP) and attempts to balance both the
queries and the resolutions on every server of the platform.
A second approach, called “stacking”, uses the global cost
associated to the FQDNs. Lastly, we consider to build a routing
table based directly on the output of the K-means clustering
algorithm applied to some ad hoc variables characterizing the
FQDNs. Each of these algorithms are compared by running a
simulation with a 10 minutes DNS traffic capture. Comparison
is performed via the difference of queries (resp. resolutions)
processed by each server of the platform, as well as the
corresponding CPU. In this section, we consider a platform
formed by a cluster of 10 servers dedicated to DNS resolution.

A. Modelization

Operational teams evaluate the efficiency of different load
balancing techniques by comparing the CPU load of each
server. The latency is not considered in this work as it is not
possible to model it in a simple way. Providing an estimation of
CPU load for a server relies on experimental measurements,
and [11] mentioned that measured values for the CPU load
depend on the hardware, the DNS server implementation and
the traffic, among other parameters. Since we do not want to
rely on these factors, we evaluate the differences of the CPU
load by considering the number of queries and resolutions
performed by each server of the platform. Such evaluation
requires to define specific notation and formulation introduced
in [4]. These notations are used to build a routing table with
a Mixed Integer Linear Programing (MILP) method. For each
FQDN, the number of resolutions is computed thanks to the
queries number and the mean TTL value observed for the
FQDN. Since we consider popular FQDNs, we assume that a
resolution occurs every TTL seconds.

B. Mixed Integer Linear Programming Method

The Mixed Integer Linear Programming (MILP) method
consists in finding a minimum with respect to inequations
constraints, cf. [12] for instance. We define a given set I of
FQDNs. For a given distribution of these FQDNs on the servers
of the set J , we compute the number of queries and resolutions
supported by each server (Qj , Rj)j∈J . The distribution we are

seeking for is the distribution which minimizes the difference
between the different servers of the platform, in term of
(Qj , Rj)j∈J : ∆Q and ∆R.
Trying all possible combinations for such a distribution is not
feasible, so we formulate our problem as a Mixed Integer
Linear Program and use a solver (GLPK in this case, cf.
[13]) to find a proper distribution. The challenge of the
solver is to find a distribution which is close to the optimal
distribution, even though we do not know the optimal solution.
Reference [4] shows that a set of 200 FQDNs in FQDN+ is
a compromise between the number of FQDNs to process and
the resources needed for the computation.
The Integer Linear optimization problem with two objectives
consists in minimizing ∆Q and ∆R defined as followed:

∆Q = max
j1∈J

Qj1 − min
j2∈J

Qj2

∆R = max
j1∈J

Rj1 − min
j2∈J

Rj2

To ease the resolution by the solver, we reduce the number of
objectives by defining a FQDN cost combining the query rate
qi and the resolution rate ri for FQDN i ∈ I:

ci = λ.qi + (1− λ).ri ∀i ∈ I where λ ∈ [0, 1]

λ is a weighting parameter which determines the parts of q
and r in the definition of the cost. In that sense, the important
parameter is not λ itself but the ratio λ

1−λ (or 1−λ
λ ). Note that

λ is introduced here only for resolving purpose, and has a
priori no physical meaning. The objective function associated
to this cost ensures the minimization of the cost supported by
each server, which leads to the minimization of the difference
of costs between the different servers. Costs which are not
supported by the most loaded server are transfered to other
servers, increasing the cost supported by the less loaded server,
which reduce difference of cost supported by servers.
We run a solver for different values of λ and for each value
we consider ∆Q and ∆R. Figure 2 represents the solutions
for specific values of λ. Some values of λ do not provide
optimal solution whereas others provide an optimal solution.
In the figure 2, these optimal solutions for λ are pointed by the
line called Pareto front. Among the values on the front, there
are no mathematical way to decide whether one is better than
the other. Choosing a solution is based on choosing whether
we prefer to minimize ∆Q or ∆R. Thus, the decision should
consider other aspects such as operational criteria. Also, we
should mention that λ values on the Pareto front are difficult
to characterize. If λ0 correspond to a point located on the
Pareto front, then (λ0+ε) does not necessarily provide a value
close to the front. The value can be located anywhere on the
(∆Q,∆R) plane. This reflects the non convex aspect of our
problem since we use a discrete space for (xi,j)i∈I,j∈J . We
use the solver GLPK [13] running during 1000 seconds to
solve this problem. We recall that the routing table is built
in an off-line mode, only once. Running GLPK longer does
not give better results for our 200 FQDNs set. The number
of FQDNs chosen is limited by resources used by the solver.
We denote this algorithm by milp-200, and figure 2 shows that
∆R as well as ∆Q can be very small.

C. Easy Stacking Heuristic

Because of computation resources and time needed by the
method described in subsection III-B, we consider another



Fig. 2: Bi-criteria MILP results and Pareto front

approach. The goal of this algorithm is similar to milp-200:
minimizing jointly ∆Q and ∆R. However, the way we build
the routing table provides less accurate results as milp-200.
As a result, we need to consider a much larger set - namely
18 times larger - of FQDNs to build a routing table which
balances properly the load among the servers. Even though
the routing table is roughly 18 times larger, it takes less than
0.5 second to build it. Compared to 1000 seconds with milp-
200, this method may present an operational advantage over
milp-200.
The algorithm starts with I , a set of the most requested
FQDNs. From the current set of FQDNs, it takes the costliest
FQDN, assigns it to the less charged server (i.e. a server
jmin verifying Cjmin = minj∈JCj) and removes it from the
FQDNs set. This step is performed until the set of FQDNs is
empty.
To compare it with the milp-200, we compute ∆Q and ∆R
for different values of λ. We first choose a set of 200 FQDNs
to be compared with results from subsection III-B. We choose
I , the set of FQDNs, such that the last element is associated
to a cost which is roughly the difference of costs generated by
stacking-200. This leads to consider 1580 FQDNs. We denote
these algorithms as stacking-200 and stacking-1580. Note that
200 FQDNs represent 16% of the queries number and 1580
FQDNs represent 46% of the queries number.

D. K-means Clustering Based Method

This section proposes to use the K-means algorithm
as another way to build routing tables. The K-means is a
clustering algorithm, widely used in the field of machine
learning, cf. [14] and [15] for instance. In our case, it groups
similar FQDNs into clusters such that the differences (or
dissimilarities) between FQDNs into a cluster are minimal.
The K-means is run on all FQDNs and groups the FQDNs
with similar costs. One of the cluster is very large and
contains the FQDNs with the lowest cost, i.e. the FQDNs
requested only a few times during the studied period. These
FQDNs are less popular, and thus we do not consider them
in routing tables, they will be assigned to a server according
to a hash function. For all other clusters, we spread FQDNs
within each cluster uniformly among the servers. We expect
to balance properly the traffic among the servers.
In this section, the K-means algorithm is applied with one
parameter which results in a collection of 5 clusters. The
variable used is a weighted sum of parameters reflecting the

cost in term of CPU load due to each FQDN. In other words,
we cluster FQDNs on the basis of an evaluation of the CPU
load computed thanks to the number of query and resolutions.
We denote by M the number of servers (M = card(J)). We
thus construct a routing table based on the cluster outputed
by the K-means algorithm. First, we consider the cluster
containing the costliest FQDN and denote n1 its cardinal.
FQDNs are distributed by a round-robin among the servers.
The last FQDN is associated to the server n1 mod M .
This ensures that the FQDNs of the cluster containing the
costliest FQDNs are spread evenly on all servers. Similarly,
the first FQDN of the second cluster is assigned to the server
(n1 + 1) mod M and the last FQDN of this cluster to server
(n1 + n2) mod M , n2 being the cardinal of the second
cluster. We proceed in this way until the last FQDN of the
fourth cluster is assigned to a server. All FQDNs of the four
clusters represent around 5% of the DNS traffic, thus this
algorithm is called K-means-5% in the remaining of the paper.
The advantage of the K-means approach over the MILP
based solution is that it can deal easily with large amounts
of data. However, stacking is even faster. K-means does
not outperform stacking because it does not produce large
clusters. In fact, if clusters had a huge amount of data with
similar cost, compared to the number of servers, then, the cost
would be uniformly distributed among each cluster. In our
case, the FQDNs with heavy costs are too specific FQDNs,
and are not numerous enough compared to the number of
servers. However, this technique avoids the worst case where
two very costly FQDNs would be assigned to the same server.

IV. OVERALL PERFORMANCE OF THE METHODS

Performance comparison evaluates required resources to
generate the routing table, as well as the ∆CPU , which is
the difference of CPU load of the servers of the Resolving
Platform. Measurement of ∆CPU is performed through ∆Q
and ∆R. The performance of the algorithms is evaluated in
this section by replaying a DNS traffic capture of 10 minutes
during the rush hours.
For each query, if the queried FQDN is present in the routing
table, then the DNS query is resolved by the server designated
by the routing table. If the FQDN is not in the routing table,
then a hash of the FQDN is performed. Hash values are
then uniformly assigned to the servers. Hash function makes
the routing quite short, and does not require the mapping of
a FQDN to a server of the platform to be explicit. In our
simulation, we choose to use SHA1 [5] as the hash function,
because of its good avalanche effect, cf. [16].
The best routing table is the one with the lowest ∆Q and the
lowest ∆R. As average queries and responses numbers per
server are the same (traffic and servers numbers are identical),
the performance indicators considered are ∆Q and ∆R (must
be minimal), the Cache Hit Rate (CHR, must be maximal) and
the difference between maximal and minimal CHR (∆CHR,
must be minimal).
For each algorithm we represent the routing table generating
the best CHR. Statistics presented in figure 3 depict the repar-
tition of the CPU load observed. It highlights the maximum
load observed (i.e. the CPU load of the most loaded server
in the cluster), the minimum, the quartiles and the median
estimate. This representation allows to compare how balanced



is the CPU load in the platform.
Moreover, as in subsection III-D, we decide to evaluate our
routing table using only one criterion. We use the cost defined
in [11] and consider the repartition of costs on servers for
a 10 servers platform. We define different costs representing
average CPU load during the simulation for both BIND9 and
UNBOUND implementation and for both DNS and DNSSEC.
Our goal is to find a routing table balancing the CPU load.
The simulations are run with a number of servers lower than
the one used in a real platform and costs are evaluated on
a computer which is not representative of production servers.
The important parameter is not the CPU load itself but its
repartition among the servers and the comparison of its value
for different routing tables. It appears that Stacking 1580 is
the best algorithm as it minimizes the differences between
resolution servers and results in a maximum of 2% CPU load
difference between servers.
All algorithms considered based on the queried FQDNs (all
but XOR) are better than the algorithm based on IP addresses
(XOR) in minimizing the resources needed, by needing be-
tween 1.14 (DNS) and 1.32 (DNSSEC) times less servers.
DNSSEC increases differences between IP addresses based and
FQDNs based algorithms.
Routing table length is a parameter influencing resources
repartition but the algorithm used to generate the routing table
is also important. For example, K-means-5% uses a bigger
routing table than the one used by milp-200 but does not
perform better in balancing traffic.

S
ta

c
k
in

g
 1

5
8
0

S
ta

c
k
in

g
 2

0
0

M
IP

 2
0
0

K
−

m
e
a
n
s

S
H

A
1

X
O

R

85

90

95

100

105

110

115

c
o
s
t 
(%

C
P

U
)

(a) DNS

S
ta

c
k
in

g
 1

5
8
0

S
ta

c
k
in

g
 2

0
0

M
IP

 2
0
0

K
−

m
e
a
n
s

S
H

A
1

X
O

R

150

160

170

180

190

200

210

220

c
o
s
t 
(%

C
P

U
)

(b) DNSSEC

Fig. 3: repartition of costs (with BIND9)

V. CONCLUSION

FQDN-based load balancing is attractive for improving
the Cache Hit Rate (CHR) and for reducing the resources
needed to process the DNS(SEC) traffic on an Internet re-
solving platform. We can take advantage of the most popular
FQDNs distribution to improve this load balancing. The few
most requested FQDNs can be easily processed according
to a routing table, whose size is rather small compared to
the volume of traffic considered, while handling the other
FQDNs is performed dynamically. The main contribution of
the paper lies in the new application of optimization and ma-
chine learning methods (namely mathematical programming
and clustering) in order to build these routing tables for load
balancing the traffic among the platform. It appears that the
heuristic-based algorithm leads to the best routing table as
it minimizes the differences between resolution servers and
results in a maximum of 2% CPU load difference between
servers. Also, all the load balancing methods considered based
on the queried FQDNs are better than the one based on IP

addresses in minimizing the resources needed. Actually, they
need between 1.14 (DNS) and 1.32 (DNSSEC) times less
servers. A compromise must be found for the appropriate size
of the routing table: the bigger it is, the better is the CHR and
the balance between servers, but the slower is its generation.
Further works include the optimized processing of rarely
requested FQDNs and the study of the robustness for the
proposed load balancing techniques.

REFERENCES

[1] P. V. Mockapetris, Domain names - implementation and specification,
RFC 1035 (Standard), IETF, Nov. 1987.

[2] Nortel Networks, Alteon OS 21.0, Alteon Application Switch, Part Num-
ber: 315394-D.01, Sep. 2003.

[3] D. Migault and M. Laurent, How DNSSEC resolution platforms benefit
from load balancing traffic according to fully qualified domain name,
Proc. of CSNA, 2011.

[4] S. Francfort, D. Migault and S. Senecal, A bi-objective Mixed Integer
Linear Program for load balancing DNS(SEC) requests, Proc. of DNS
EASY, 2011, extended version in International Journal of Critical Infras-
tructure Protection, Elsevier, 2012.

[5] National Institute of Science and Technology, Secure Hash Standard,
Federal Informational Processing Standard (FIPS), USA, Apr. 1993.

[6] T. Bourke, Server Load Balancing, O’Reilly, 2001.
[7] Y. M. Teo and R. Ayani, Comparison of Load Balancing Strategies on

Cluster-based Web Servers, Simulation, 77(5-6):185-195, 2001.
[8] X. Jiang, J. Du and A. Bai, The Design and Research of Smart DNS

Applied in ISP, Recent Advances in Computer Science and Information
Engineering, Lecture Notes in Electrical Engineering, Vol. 127, Springer,
2012.

[9] L. Breslau, C. Pei, F. Li, G. Phillips and S. Shenker, Web caching and
Zipf-like distributions: evidence and implications, Proc. of INFOCOM,
1999.

[10] J. Jung, E. Sit, H. Balakrishnan and R. Morris, DNS performance and
the effectiveness of caching, Proc. of IMW, 2001.

[11] D. Migault, C. Girard and M. Laurent, A Performance view on DNSSEC
migration, Proc. of CNSM, 2010.

[12] A. Schrijver, Theory of Linear and Integer Programming, John Wiley
and Sons, 1998.

[13] GNU, GNU Linear Programming Kit, http://www.gnu.org/s/glpk.
[14] J. Kogan, Introduction to Clustering Large and High-Dimensional Data,

Cambridge University Press, 2006.
[15] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2010.
[16] H. Feistel, Cryptography and Computer Privacy, Scientific American,

228(5):15-23, 1973.


