QoC-Aware Context Data Distribution in the Internet of
Things

Pierrick Marie!, Léon Lim?, Atif Manzoor?, Sophie Chabridon?, Denis Conan?, Thierry Desprats!
IRIT UMR 5505 Université Paul SABATIER, 31062 TOULOUSE, France
<firstname>.<lastname>@irit.fr
2|nstitut Mines-Télécom/Télécom SudParis, CNRS UMR 5157 SAMOVAR, 91011 Evry, France
<firstnames>.<lastname>@telecom-sudparis.eu

ABSTRACT

The Internet of Things (IoT) is a very dynamic and
heterogeneous environment that generates plethora of sensor
data, accessible to develop new smart pervasive applications.
However, the substantial amount of effort required to
collect and disseminate context data with sufficient quality
prevents the context consumers to take advantage of the
IoT to its full potential. Consequently, novel research
efforts are required to design middleware solutions able to
deliver relevant context data to consumer applications while
hiding the complexity of data distribution in heterogeneous
and large-scale environments. This paper presents the
INCOME framework that enables context producers to
express the level of Quality of Context (QoC) they are able
to provide and context consumers to set thresholds on the
QoC they expect in order to determine how to distribute
context data. Our experiments show that context data
can be annotated with QoC metadata and distributed from
producers to consumers with a reasonable additional cost
even on resource-constrained devices such as Raspberry Pi.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organisation]:
Communication Networks—Distributed Systems.

Computer

General Terms
Design, Experimentation.

Keywords
IoT, Middleware, Distributed Event-Based Systems, Quality
of Context

1. INTRODUCTION

By connecting any kind of things, the Internet of Things
(IoT) paradigm allows the design of new applications in
domains such as smart cities, smart homes, transportation
and logistics. In addition to the communication standards

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first p age. C opyrights f or c omponents o f t his w ork o wned b y o thers than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

MA410T’ 14 Workshop on Middleware for Context-Aware Applications in the IoT,
December 08-12 2014, Bordeaux, France

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3234-7/14/12 ...$15.00.
http://dx.doi.org/10.1145/2676743.2676746

13

proposed by the IETF (6LoWPAN, CoAP, etc.), the
development of these applications will benefit from
abstraction layers, and more specifically from concepts
dealing with Quality of Context (QoC) aware context data
distribution, that typically fall within the role of middleware.
Since many of these smart things interact by pushing events,
the publish/subscribe communication model [4] that is at
the root of distributed event-based systems (DEBS) [10]
is an important enabler: Their loosely-coupled interaction
model decouples in space and time the things that produce
events from applications that consume these events.

The IoT enables the collection of a large variety of context
data, coming from local ambient sensors or remote sources
such as cloud services. These context data can then be
exploited by pervasive applications to detect the current
situation of the users and provide them with the relevant
services corresponding to their precise needs. However,
context data are known to be imperfect and uncertain by
nature [6]. Not underestimating the uncertainty of context
data is crucial for enabling pervasive applications to behave
properly. One way to limit this uncertainty is to manipulate
additional knowledge associated to context data in the form
of metadata. These metadata then represent the Quality
of Context (QoC) [1] and allow to improve the operational
value of the context [7] through various QoC criteria such
as freshness, precision or correctness.

Even though event uncertainty has been recognized in
DEBS, only a few works have made some proposals
regarding this concern [8, 12]. This paper builds on
our previous work on QoC modeling [9] and leverages
the publish/subscribe model with QoC-based filtering.
Our contribution consists in a content-based context data
distribution framework where context producers express
their QoC guarantees in advertisement filters and context
consumers specify their QoC requirements in subscription
filters. A matching mechanism specifically designed to
consider context events with QoC metadata is then used
at publication time.

The structure of the paper is the following. Section 2
presents a motivational scenario for our framework, which is
then described in Section 3. Section 4 exposes the results of
our evaluation of the cost of QoC-based filtering. Section 5
discusses some related works and Section 6 concludes the
paper and expresses some perspectives.

MUDEBS [+ Dissemination |
| ~ 2 Overlay of Brokers =~ |
7)
Y]
| Pru’z}'ucer | | Cansumir |
2 £
r 1 I 1
[% = Context Context !/ Context-aware \{
o Collector Processing Application
[:m A‘\ Capsule N Mi
V@ /
\ 2) MuContext « Fusion
+ Aggregation + Delivery
+ Acquisition ¢ Storing
* Summarization =
+ Caching
* Filtering
+ Inferring

Figure 1: INCOME Logical Architecture

2. MOTIVATION

Bob arrives in Bordeaux to visit the city. He likes to walk
or ride a bike. However, he is an asthma patient and
very allergic to the polluted air. His host in Bordeaux
advises him to install a pollution monitoring application to
keep track of the air quality in the city streets. His host
tells him that thanks to the INCOME framework, a lot of
context-aware applications are now available in Bordeaux
to inform and help the citizens about the current situation
concerning different aspects of their life in the city. All those
applications are using the INCOME framework for context
collection and distribution.

Bob installs an application that receives INCOME context
feeds about the air quality in the city streets. The INCOME
framework uses QoC metrics to extract and aggregate the
context information and generates high quality context
feeds before sending notifications to concerned applications.
This way applications get relevant information about
the pollution level in the city streets. Bob configures
the application according to his preferences and starts
walking through the city streets following the application
notifications. Bob visits Bordeaux historical places walking
through the streets with good air quality and is very happy
with his experience. The INCOME framework enables
programmers to develop many interesting context-aware
applications without investing any effort, time and money
to collect context information and analyze the quality of the
collected context information.

3. THE INCOME FRAMEWORK

The INCOME framework, as shown in Figure 1, consists of
two major parts, MUDEBS and MuCONTEXT. MUDEBS
takes over the context data distribution meanwhile
MUCONTEXT deals with context management entities
and their data models. MUCONTEXT comprises context
collectors, context processing capsules and context-aware
applications. The context collector and the context capsule
are inspired from the elements of the Context Toolkit [3]
and of the Contextor [2] in that they are basic building
blocks. In Section 2, context collectors, in collaboration
with the city management services, collect raw sensor data

14

(e.g. proportion of gases in the atmosphere) and metadata
(e.g. location of sensors, precision of the measurements).
Context processing capsules use sensor data to extract
high level context information, such as the air quality at
different locations in the city estimated as good, moderate,
unhealthy for sensitive groups, unhealthy, very unhealthy
and hazardous. They use the metadata to compute QoC
indicators for that context information evaluated as low,
medium, and high. Context processing capsules also
work as context producers and publish the high quality
context information along with QoC indicators to MUDEBS,
according to context contracts registered as advertisement
filters. Finally, context information along with QoC
indicators is provided to subscribed context consumers
according to their requirements. This means that Bob
can register a subscription filter indicating he wants to be
notified when the air becomes unhealthy for sensitive groups
and when this information is tagged with a correctness QoC
indicator equals to medium.

The remainder of this section details the concerned part of
the INCOME framework.

3.1 Context distribution

MUDEBS is a framework offering content-based routing
and is responsible for distributing context data. It is
generic in the sense that it is data-model agnostic (data
models are manipulated in MUCONTEXT). The interface of
MUDEBS is the one of a distributed event-based system.
Architecture elements called “producers” declare the kind of
data they are willing to produce in “advertisements”. Then,
they publish these data in what are called “notifications”
or “publications”. Other architecture elements called
“consumers” declare the information they want to receive
and react to notifications delivered to them through
“subscriptions”.

MUDEBS organises an overlay network of brokers that
connect producers and consumers. Producers and
consumers are collectively called clients. A client is
connected to only one broker at a time; this broker is
called the access broker. In content-based filtering, the
filters managed by brokers in their routing tables evaluate
predicates on the whole content of notifications [4]. In
other words, there is no addition of routing metadata to
notifications as done in topic-based filtering. MUDEBS
assumes that the data are semi-structured records serialised
as XML schemas. The rationale for the choice of XML is
its openness to allow approaches such as sensors as a service
or ontology-based inference engines that often bring to play
XML languages like RDF. It follows that we use XPath to
navigate through XML data as standardized by the W3C.

An advertisement, which expresses the set of publications
that a producer is allowed to publish, is kept local to the
producer’s access broker. Figure 2 shows the interaction
between a producer and its access broker Bi. The filter I,
which is uniquely identified by id, is advertised through the
call to the operation advertise. The access broker registers
the advertisement filter. Thereafter, when the producer
publishes the notification n in the context of the filter
identified by id, the access broker filters out n if n does not
match F. In Figure 2, the advertisement filter is intuitively

drawn as an “input filter”.

Producer

1. advertise(id, F)
2. publish(id, n)

\ 1. add adv. filter (id, F)
2. if n matches filter F
then forward n using subscriptions filters

else withdraw n

Figure 2: Effects of an advertisement on muDEBS
brokers

In practise, an advertisement filter is a function, written in
JavaScript, that evaluates XPath expressions and returns
false when the notification does not match the filter, or
returns true when it matches the filter.

A subscription expresses the set of publications that a
consumer wants to consume. Figure 3 shows the interaction
between the consumer and its access broker (and indirectly
with the brokers of the overlay network) during a
subscription. The subscription filter F” identified by id’ is
installed on every broker and leads to the formation of a
spanning DAG (Directed Acyclic Graph) directed towards
the consumer. The DAG is built so that producers can
connect to any broker and so that their notifications will
reach the consumers when they match F’. Therefore, when
a producer publishes a notification n’ associated to the
advertisement filter id, the access broker of the producer
applies the advertisement filter F'. If n’ matches F', then the
access broker of the producer evaluates all the subscription
filters it is aware of. When n’ matches a subscription filter,
let say F’, the notification n’ is forwarded towards the
subscriber of F’ via the access broker of the subscriber,
which is notified of n’. In Figure 3, the subscription filter is
intuitively drawn as an “output filter”.

3.2 Software entities for QoC management
MUCONTEXT involves three categories of software entities
(see Figure 1): context collectors, context processing
capsules, and context-aware applications. These categories
implement a functional part of context management.

3.2.1 Context collectors and QoC management

A context collector is a software entity dealing with the
acquisition of raw context data, i.e. that have not yet been
processed or transformed. And it must be able to associate
QoC metadata to raw context data. Since a context collector
plays the role of an initial context producer, it manipulates
QoC indicators relative to rather low level criteria. A low

15

/l. publish(id, n’)

4. if n” matches filter F
then forward n’ usin

subscriptions filters
else withdraw n’

3. add sub. filter (id", F) ,~
PSR SR W

4. if 0’ matches filter F* | ™\
then forward n’

else ignore n’ |

\

3. subscribe(id’, F’)

Consumer

Effects of a subscription on muDEBS

Figure 3:
brokers

level criterion does not require computations or complex
statistical analysis.

QoC specializes the general notion of Quality of Information
(Qol) for context data. Freshness, precision and
completeness are examples of QoC criteria. We have
proposed in [9] the dedicated QoCIM (Quality of Context
Information Model) meta-model, which offers a unified
solution to model heterogeneous metadata about QoC.
QoCIM includes constructs to: (i) associate QoC indicators
to any context data. Each indicator is defined by one QoC
criterion and can be valuated at runtime, in a dated way,
by metric values; (ii) specify one or more definitions to
characterize the metrics for the valuation of a criterion;
(iii) define composite criteria in order to manipulate a
single general QoC indicator instead of a set of individual
indicators where each one corresponds to a simple QoC
criterion. Consequently, QoCIM allows to exploit and
manipulate QoC criteria in an expressive, computable and
generic way.

3.2.2 Context

management

A context capsule is a functional element which performs
the processing of context information into information of a
higher level of abstraction made available to other capsules
or context-aware applications. A context capsule is a context
consuming and producing entity. The data produced are at
a higher level of abstraction than the data consumed. It
assumes the roles of intermediate consumers and producers
in the chain of context information processing.

processing capsules and QoC

Several categories of context data manipulation can be
operated by a capsule: aggregation, filtering, fusion,
inference... The context management operations do not only
perform a transformation of the context data flow. They
also analyze what are the impacts on the management of
QoC metadata during these manipulations which encompass
more and less complex operations like: add / retrieve QoC
indicators, update the value of an indicator, filter on the
presence of an indicator or filter on the value of an indicator.

3.2.3 Contracting QoC

We take into account QoC requirements and guarantees
through the notion of contract. Context producers
express guarantees on the quality of the data they
produce (symbolized by the arrow labelled Gaoc
in Figure 1). Conversely, consumers express QoC
requirements (symbolized by the arrow labelled Raqoc).
These requirements and guarantees are then formalized
in the form of context contracts on both the producer
and consumer sides. Decoupled contracting is based on
advertisement and subscription filters. An advertisement
filter allows to express guarantees related to one or more
QoC indicators, while a subscription filter specifies a
requirement concerning some QoC indicators.

The specification of contracts and their translation into
filters is of the responsibility of MUCONTEXT while their
implementation and evaluation are of the responsibility of
MUDEBS.

MUDEBS relying on content-based filtering, filters are stored
in the routing tables of the brokers and are evaluated as
predicates on the notifications to be sent. These filters can
relate to QoC indicators. MUDEBS is agnostic of the data
model, allowing to manipulate any model, for instance based
on QoCIM filters.

4. EVALUATION OF THE COST OF

QOC-BASED FILTERING

This section highlights the impact of QoC management
on the performance of the INCOME framework. We first
perform an experimental evaluation of the execution time
of routing filters. We then present a quantitative analysis
of an upper bound of the size of notification messages
handled by the framework. Based on these results, a set of
recommendations to write notifications and routing filters
concludes this section.

4.1 Execution time of context and QoC-based

routing filters

We relate in this section the experimental evaluation we
have conducted on a prototype implementation of MUDEBS
and MUCONTEXT for measuring the execution time of
routing filters. For deciding whether a notification must
be forwarded or not, the different constraints that compose
a routing filter are evaluated. Constraints are XPath
expressions. They control a subset of the notification
and the content of a notification has to respect all of the
constraints in order to be forwarded. The study consists in
applying a routing filter to a single notification. The filters
were configured to return true after a complete evaluation
of the notification. The measurements of the execution
time of routing filters presented in this section have been
acquired with a machine equipped with an Intel i7 processor
cadenced at 2.90 GHz and 4 GB of RAM and a Raspberry Pi
machine', a low power machine that can be connected to the
Internet of Things. To get realistic execution times, all the
measurements correspond to the mean of 500 consecutive
executions of routing filters.

Lwww.raspberrypi.org

16

4.1.1 Context-based filters

Before evaluating the performance of QoC-based routing
filters, a first evaluation has been conducted to measure
the execution time of context-based filters. The part of a
notification message relative to context data is structured
with three main elements: (i) a context observable is an
abstraction that defines something to watch over (observe);
(ii) a context entity is an element representing a physical or
logical phenomenon (person, concept, etc.) to which context
observables may be associated; (iii) a context observation is
the state of an observable at a given time. An URI identifies
the context entity and the context observable. For the rest of
the study we consider context-based filters as routing filters
composed with only one context-constraint that exclusively
rely on these URI. Listing 1 presents an example of this
kind of constraints. The constraint requires the pollution
resource measured with the sensor number 45 placed in the
Thiers avenue in Bordeaux. The execution time of this kind
of filters is approximately 58 ms on the desktop machine and
approximately 1045 ms on the Raspberry Pi.

4.1.2 QoC-based filters

After measuring the execution time of context-based
routing filters, the second part of the study is focused
on QoC-based routing filters. For this evaluation, two
types of constraints relative to QoC metadata have been
expressed. (i) A QoC-criterion constraint controls if the
metadata of a notification include all the expected QoC
criteria. It therefore evaluates the attribute id of the classes
QoClIndicator, QoCCriterion and QoCMetricDefinition of
the QoCIM meta-model [9]. (ii) Like the first type of
constraints, a QoC-value constraint controls QoC criteria.
It additionally controls the value of each QoC indicator by
evaluating the attribute value of the class QoCMetric Value.
Listing 1 presents an example of these two types of
constraints. In the example, both constraints require the
criterion 10 while the QoC-value constraint also requires a
QoC metric value larger than 40.

Listing 1: Examples of constraints used for the study
// Context—based constraint
if(xpath.evaluate(”//observable[uri="#pollution’ and
entity [uri='bordeaux://thiers_ave./sensors /45/"]]",
doc, XPathConstants.NODESET).length = 0) {

return false; }

// QoC—criterion constraint

if (xpath.evaluate(”//qocindicator[@id="10"

and qoccriterion[@id="[10.1]"]/

qocmetricdefinition [@id="10.1"]]",

XPathConstants .NODESET) . length
return false; }

doc,

0) {

// QoC-value constraint
if(xpath.evaluate(”//qocindicator[@id="10" and
qoccriterion [@id="[10.1]"]/
qocmetricdefinition [@id="10.1"]
and qocmetricvalue [@value >="40"]]", doc,
XPathConstants .NODESET) . length 0) {

return false; }

To compare the execution times for QoC-criterion and
QoC-value constraints, we used two routing filters. The
filter A contains one QoC-criterion constraint while the filter
B contained one QoC-value constraint. For a notification
with 256 QoC metadata, the biggest notification used in
the study, the desktop machine spends respectively 538 and

2262

1654 -

Execution time (ms)
=
\

Legend
4 QoC filter on Raspberry pi
+ Context filter on Raspberry pi
* QoC filter on desktop
= Context filter on desktop

183:
61

64
Number of QoC meta-data

Figure 4: Execution time of QoC-based filters

depending on the number of QoC metadata

576 ms to execute the filters A and B. With the same
configuration, the Raspberry Pi machine spends respectively
10480 and 11290 ms. There is not a significant difference
between the execution time of the filters A and B. Therefore
we consider for the rest of the study QoC-criterion and
QoC-value constraints as equivalent and the measurements
are made with QoC-value constraints.

Figures 4 and 5 compare the execution time of different
routing filters. The dashed lines indicate the execution
time of the context-based filters presented in Section 4.1.1.
The Figure 4 presents the results of the experimentation
where the notifications vary while the QoC-based filters do
not change. For this experience, the filter is composed of
only one QoC-value constraint and the notification contains
one observation with 1 to 128 different QoC metadata.
The slopes of the corresponding results are respectively 0.6
and 9.5 for the desktop and the Raspberry Pi machine.
Conversely, another experimentation has been conducted
where the notifications do not change but the QoC-based
filters vary. Its results are displayed in Figure 5. In that
case, the notification contains one observation with only one
QoC criterion whereas the filter contains 1 to 32 different
QoC-value constraints. For the desktop machine, the slope
of the results is 2.7 and 42 for the Raspberry Pi machine.

For the same machine, the slopes of the graphs in Figure 5
are 4 times greater than the slopes of the graphs in Figure 4.
That means the number of constraints within routing filters
has more impact in terms of execution time than the number
of QoC meta-data contained within notifications. Moreover,
the figures indicate the execution time of the filter follows a
linear curve and provides a solution to predict the execution
time for higher number of QoC meta-data or constraints.

4.2 Estimation of the size of notifications

17

2360

17304
)
E 13464
o
£
5
310534
2
w Legend
4 QoC filter on Raspberry pi
+ Context filter on Raspberry pi
* QoC filter on desktop
= Context filter on desktop
144+
104 4
1=k - - - - - e] -
1 8 16 3
Number of constraints
Figure 5: Execution time of QoC-based filters
depending on the number of constraints
Size of one Size of one piece
observation of QoC metadata
Empty XML document 426 char 444 char
Real XML document ~ 600 char ~ 800 char

Table 1: Size of observations and QoC metadata

As explained in Section 3.1, notifications exchanged
between producers and consumers are serialized as XML
documents. For this study, we used the first version of
the framework that provides an unoptimized serialization
method and produces uncompressed documents. Therefore,
the XML documents are very verbose. For example, a
QoC indicator is declared as follows: <qocindicator id="10"
name="PrecisionQoClndicator">...</qocindicator>. So, this study
estimates the number of characters in the worst case, where
the size of the notifications is the largest.

A notification contains at least one observation (the context
data) and optional QoC indicators (composed of a value
and a definition) based on the QoCIM meta-model [9].
Table 1 summarizes the size of XML documents following
the context model of MUCONTEXT. The size of an empty
XML structure of an observation is close to the size of a
QoC indicator, but with real data a QoC indicator needs
more characters than an observation. Two reasons explain
this difference. Firstly, the QoCIM meta-model contains
more attributes than the context model used to represent an
observation. Secondly, many attributes of QoCIM are based
on String and include verbose information. Using Table 1,
it is possible to estimate the size of a notification with the
following formula:

size = 600 * nb observations + 800 * nb QoC metadata
A notification with one observation and one QoC indicator

then contains 1400 characters. If the notification includes
the 17 QoC indicators identified in the state of the art of [9],

its size becomes 600 4 17 * 800 = 14200 characters. So, with
an unoptimized serialization method, the size of notifications
is significantly impacted by the number of QoC metadata.

4.3 Discussion

We consider a notification with 8 QoC meta-data as usual
because it can cover many use cases like the scenario
described in Section 2. In that case, Figure 4 indicates
the execution time of a routing filter increases by 10%
compared to a notification with only 1 QoC meta-data. In
the same way, a routing filter with 8 constraints can express
many requirement and cover various scenario. In that case,
Figure 5 indicates the execution time of a routing filter
increases by 30% compared to a filter with only 1 constraint.
So, the impact of adding QoC management to routing filters
is negligible as long as QoC-based filters do not require to
evaluate more than 8 QoC-value constraints or notifications
do not include more than 8 QoC metadata.

If the execution time of QoC-based routing filters is
considered as acceptable when it corresponds to less
than two context-based filters, they may contain up to
16 QoC-value constraints. Similarly, a notification that
includes up to 64 QoC meta-data is analysed by a QoC-based
filter with one QoC-value constraint in the same time taken
by the evaluation of two context-based based filters. But in
that case, the size of notifications becomes large and using
compressed XML documents appears mandatory.

5. RELATED WORKS

A few works have started to consider the uncertainty of
context data during the dissemination phase. [5] proposes
a context data distribution infrastructure for query-based
applications. Cache management strategies then rely on
QoC for keeping only fresh data in the cache. We instead
consider that future pervasive applications will benefit
from event-driven thinking more than from a traditional
request /response model. [8] considers quality-aware data
stream management systems based on a relational model
and with a probabilistic processing for the evaluation
of quality of context. FEven though such an approach
is promising, it remains very sensible to the choice of
the system parameters for the probabilistic processing.
[11] describes a quality-aware publish/subscribe system
for mobile sensor networks. It proposes to rely on
location-based routing to deliver the subscriptions to the
corresponding areas of interest. However, only event
consumers may express their QoC expectations and no
advertisement is performed on the side of event producers.
We believe that a more powerful filtering can be obtained
with content-based routing which benefits from both
consumer requirements through subscriptions and producer
guarantees through advertisements.

6. CONCLUSION AND PERSPECTIVES

This paper proposes to add QoC-based filtering in a DEBS
infrastructure as a middleware solution for an efficient
context data distribution in the IoT. We rely on a generic
DEBS pattern and a generic QoC modeling approach which
are both agnostic of the context model to address the
heterogeneity of the [oT. The evaluation results on a first
prototype implementation with no optimization show that
the cost of QoC-based filters is reasonable.

18

One keypoint of our approach is that it was designed to
enable privacy management in future work. The knowledge
of the set of QoC indicators that are expected by consumers
and offered by producers allows to finely tune privacy
policies.

Acknowledgments. This work is part of the French
National Research Agency (ANR) project INCOME?
(ANR-11-INFR-009, 2012-2015). The authors thank all
the members of the project that contributed directly or
indirectly to this paper.

7. REFERENCES

[1] T. Buchholz, A. Kupper, and M. Schiffers. Quality of
Context Information: What it is and why we Need it.
In 10th Int. Workshop of the HP OpenView Univ.
Association (HPOVUA), Geneva, July 2003.
J. Coutaz and G. Rey. Foundations for a theory of
contextors. In Computer-Aided Design of User
Interfaces I, pages 13-33. Springer, 2002.
A. Dey. Understanding and Using Context. Personal
and Ubiquitous Computing, 5(1):4-7, 2001.
P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2), June 2003.
M. Fanelli, L. Foschini, A. Corradi, and A. Boukerche.
QoC-Based Context Data Caching for Disaster Area
Scenarios. In IEEE Int. Conf. on Communications,
Kyoto, Japan, 5-9 June, pages 1-5, 2011.
K. Henricksen and J. Indulska. Modelling and using
Imperfect Context Information. In Proc. 1st PerCom
Workshop CoMoRea, pages 33-37. IEEE Computer
Society, Mar. 2004.
N. Honle, U.-W. Képpeler, D. Nicklas, T. Schwarz,
and M. GrofSmann. Benefits of Integrating Meta Data
into a Context Model. In 8rd IEEE Conf. on
Pervasive Computing and Communications
Workshops, pages 25—29, Kauai Island, HI, USA, Mar.
2005. IEEE Computer Society.
C. Kuka and D. Nicklas. Quality matters: supporting
quality-aware pervasive applications by probabilistic
data stream management. In The 8th ACM Int. Conf.
on Distributed Fvent-Based Systems, DEBS, Mumbas,
India, May 26-29, pages 1-12, 2014.
P. Marie, T. Desprats, S. Chabridon, and M. Sibilla.
QoCIM : a Meta-model for Quality of Context. In
Springer, editor, CONTEXT’13: §th
Int.Interdisciplinary Conf. on Modeling and Using
Contezt, volume 8175, Oct. LNCS 2013.
G. Miihl, L. Fiege, and P. Pietzuch. Distributed
FEvent-Based Systems. Springer, 2006.
E. C. Ngai and P. Gunningberg.
Quality-of-information-aware data collection for
mobile sensor networks. Pervasive and Mobile
Computing, 11:203-215, 2014.
S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin.
Efficient Processing of Uncertain Events in Rule-Based
Systems. IEEE Trans. on Knowledge and Data
Engineering, 24(1):45-58, 2012.

3]

(4]

[6]

(8]

[10]

[11]

[12]

®http://anr-income.fr

