
A Model-driven Approach for the QoC-Awareness of Ubiquitous Applications

Sophie Chabridon, Zied Abid, Chantal Taconet and Denis Conan

 Institut TELECOM, TELECOM SudParis, CNRS UMR Samovar

9 rue Charles Fourier, 91011 Évry cedex, France

Email: Firstname.Lastname@telecom-sudparis.eu

Abstract - Context-aware ubiquitous applications are entering

everyday life. However, their implementation remains challenging

as there exist very few models and tools to guide application

designers and developers in mastering the complexity of context

information. This becomes even more crucial as the context of a

user is by nature imperfect. One way to address this issue is to

associate to context information some meta-data representing its

quality. We propose a generic and extensible design process for

context-aware applications taking into account the quality of

context (QoC). We demonstrate its use on a prototype application

for sending flash sale offers to mobile users. Through this example,

we show how the addition of a context-awareness aspect in an

application design process leverages the overall quality of mobile

and ubiquitous applications.

Keywords - MDE; context; QoC; pervasive applications

I. INTRODUCTION

 For more than a decade, we have been witnessing a very
fast evolution of mobile computing and ubiquitous services.
Universal access to information is now an implicit
requirement of distributed applications running on mobile
devices as users expect data to be brought to them anywhere
at anytime. However, their implementation remains
challenging as there exist very few models and tools to guide
application designers and developers in mastering the
complexity of context information.
 Context information was identified several years ago as a
corner stone for mobile, ubiquitous or pervasive applications
[8], [11]. Context managers have been proposed to infer
high-level context data from low-level raw data extracted
from several distributed sources such as operating systems,
user profiles, knowledge bases and environment sensors [2],
[8], [12], [25]. But only a few context-managers and
consequently context-aware applications do pay attention to
the Quality of the Context information (QoC). The
importance of QoC as a first-class concept for context-aware
services has first been identified by [5] defining it as “any
information describing the quality of information that is used
as context”, and considering that it is intrinsic to the
information as opposed to the computing process (e.g.,
quality of service) or to the hardware equipment (e.g., quality
of device). The notion of worth has then been added to
introduce the point of view of the targeted applications [19].
Context data are indeed known to be inherently uncertain
due to the imperfection of physical sensors and the real
world itself [3], [13]. As context data are by nature dynamic
and very heterogeneous, they also tend to be incorrect, they
indeed do not exactly reflect the real state of the modeled

entity, inconsistent, with the risk to have contradictory
information from different context sources, or incomplete
when some aspects of the context are missing [15].
Therefore, taking into account the knowledge of the quality
of context information appears to be essential to reach an
effective and efficient context management. We propose a
generic and extensible design process for context-aware
applications taking into account the quality ofcontext (QoC)
and a context manager which manages QoC. We
demonstrate QoC modeling and QoC management through
an implemented prototype Flash sale application for mobile
users. Through this example, we show how the addition of a
context-awareness aspect in the application design process
leverages the overall quality of mobile and ubiquitous
applications.
 The organization of the paper is the following. We present
in Section II the motivations of our work through a location-
aware flash sale scenario. In Section III, we explain in detail
the role of QoC in the design process, and for instance we
present the resulting context-awareness model of the
illustrating scenario. Next, in Section IV, we describe the
implementation of our QoC-aware context-manager. In
Section V, we discuss related work concerning both QoC
management and context-awareness design before
concluding the paper in Section VI.

II. MOTIVATING SCENARIO

 In this section, we introduce the location-aware flash sale
scenario for which we have developed a prototype
application to illustrate the role and significance of QoC-
aware context management. Essential to this scenario is the
knowledge of the location of the mobile user and
furthermore of the quality of this location information. We
determine the location QoC through the management of
additional context meta-data during the context management
process.
 At 10.00AM, Celina drives to the largest mall of the region
for some shopping. She has her new mobile phone with GPS
navigation, 3G and Wi-Fi communication. When she arrives
on the outdoor parking lot of the mall, she receives a short
message informing her of the availability of the new Flash
sale offer service and inviting her to download this new
application. As Celina is a frequent client of this mall, she
has already registered with the mall office and has given her
consumer profile mentioning her product preferences. Right
after downloading the application, she receives a notification
indicating that she has still 1 hour to benefit from a flash sale
running in her favorite beauty shop. As Celina location
accuracy is not good enough, only Celina’s and the shop

mailto:Firstname.Lastname@telecom-sudparis.eu

positions are shown on the map. Later in the afternoon,
Celina is inside the mall at the grocery store. She gets
another alert for a flash sale offer proposed by a new shop
that just opened and that she does not know yet. The flash
sale is running for only 15 minutes. The radio coverage
being currently very good, the location of Celina inside the
mall can be determined with a very high quality level. She
then receives on her phone a detailed and focused map of the
mall indicating the path to the shop. All along the way, she is
informed of the remaining time until the end of the flash sale
and the map on her phone gets refreshed. Thanks to the
guiding, she reaches the shop before the end of the flash sale.
 Through this scenario, we show that it may be essential to
provide applications with information on the quality of the
context information they depend on. The context manager
chooses the location which provides the best QoC, and
furthermore, different services or different behaviors are
delivered to the user according to the QoC.

III. DESIGNING CONTEXT-AWARENESS WITH QOC

MANAGEMENT

 We follow a model-driven approach to define the context-
awareness of the application. As stipulated by the model-
driven approach, designers write models conforming to
meta-models. Since we target ubiquitous applications,
besides classical application models, we need additional
context-awareness models [34]. In this paper, we focus on
the treatment of the QoC in the context-awareness
management process. So, in this section, we start by
describing the concepts manipulated in the context-
awareness meta-model with a specific focus on QoC. The
characteristics of this meta-model are to be independent of
the application. We then describe the Flash sale offer
application introduced in the scenario presented in Section II.
Finally, we show how we use the context-awareness meta-
model to derive the context-awareness model of the Flash
sale application.

A. Context-awareness meta-model with QoC

 The context-awareness meta-model is central to the design
process we propose to build ubiquitous applications for
mobile phones. We show in Figure 1 the subset of this meta-
model which presents context-awareness contracts. The basis
of our meta-model is the one presented in [34] in which a
context- aware system is composed of observable entities,
observables, and context-awareness contracts defined for
these observables. The observable entities (not displayed in
the view presented in Figure 1) are logical or physical
elements to be observed. The context data types of the
information observed on these entities are called
observables. The contribution of this paper lies in the
context-awareness contracts, and more especially, in the
QoC aspects of these contracts.
 A context-awareness contract defines a contract for a
given observable and a given application to be fulfilled by

the context management middleware service. In these
contracts, through the QoCRequirement concept, the
application designer specifies both the type of QoC (the list
of QoCParameters) and the level of QoC (QoCLevel). The
QoC parameters correspond to the meta-data we associate to
context data. A first set of these parameters is directly
collected from context sources, depending on the
information available at the sources, and additional
parameters can be computed at the acquisition step or even
later during the inference process by the context
management framework [1]. A QoCLevel defines the
expected value of some QoC parameters. For instance, three
levels of QoC (high, medium and low), which may be
associated to a QoCRequirement for a given context-
awareness contract.
 We introduce three subclasses of context-awareness
contracts that express three ways of modeling context-
awareness requirements. Firstly, when an application
designer wants to synchronously observe context data, she
specifies an ObservationContract. A context-aware
middleware, such as the one presented in [35], uses these
contracts to instantiate observation artefacts able to provide
the right level of QoC. Secondly, by using a
NotificationContract, the application designer can specify
subscriptions to events that occur for instance when a
numerical observable value reaches a fixed threshold or
when an enumerated observable value changes from one
enumeration to another one with a given QoC. The condition
is defined via the triggerCondition attribute. The designer is
also asked to indicate the application entity that will receive
the notifications. Note that observation and notification
contracts managed by the context management framework
do not deal with the adaptation decisions which are under the
responsability of the application. Then, the third kind of
context-awareness contracts, namely the
AdaptationContract, puts in action the adaptation decisions
taken by the application following the detection of a specific
adaptation situation. A ServiceContract is an example of an
AdaptationContract which allows to trigger the activation of
a service. This kind of contract may require the support from
the middleware layer to find, instantiate and deploy the
required service. Through the contract, the chosen service
may depend on the QoC level.

B. Flash sale offer application

 We now discuss the design of the Flash sale offer
application from Section II. One characteristic of this
application is to exploit the knowledge of the quality of the
context information. The application sends attractive
messages to the mobile clients present at the mall to inform
them about on-going special commercial offers that might
interest them. This potential interest is evaluated by the
system according to the context information available and to
the quality of this context information. For this application,
we have chosen three QoC parameters to characterize the

Figure 1. Meta-model of the context-awareness contract augmented with QoC.

Figure 2. Model excerpt of the context-awareness of the Flash sale application

quality of the location information as discussed in [6]: the
accuracy (expressed in m) indicating how close the estimated
value is to the real one, the freshness or up-to-dateness
(between 0 and 1) representing how old is the context
information relatively to its lifetime, and the trustworthiness
(between 0 and 1) that depends on how context data are
collected or computed and on how much the context source
can be trusted (see [1] for computation details). We
manipulate multiple context data, some being static (i.e.,
values are given directly by the user) like the user’s profile
including their preferred products, the characteristics of the
device, and some being dynamic such as the location and the
movement speed of the user.
 As the application is expected to be used outdoor (on a
parking lot, on the street) or indoor (in a mall), we consider
multiple methods of localization but with the constraint that
they do not require the deployment of a specific
infrastructure. As we want to privilege low-cost solutions,

the quality of the location information becomes a key issue.
It is important to master the QoC of the location in order to
choose the best available location information. Depending on
the capabilities of the mobile devices, several localization
means can possibly be available. In our prototype
implementation, we have considered three different
technologies: GPS, Telephone Cellular network (GSM) and
WLAN radio communication.

C. Modeling the context-awareness of the Flash sale offer

application

The application scenario presented in Section II results in
a context-awareness model conforming to the context-
awareness meta-model. We show in Figure 2 the excerpt of
this model focusing on the flash sale. The context manager
takes advantage of the presence of the QoC attached to
context information in order to provide the best location
(BestLocation, i.e. location with the best level of QoC among

the available ones at a given time). We define two contracts
related to the flash sale. The first one is the
UserLocationContract notification contract. Thanks to this
contract, the application component responsible for
displaying the map of the mall receives the user location
updates as soon as the user moves significantly. The second
contract is the FlashSaleContract service contract. It allows
a flash sale service to be triggered when there is a flash sale
of interest in the user’s vicinity. The Flash sale service is
chosen according to the QoC level.

Figure 3 gives the definitions of three QoCLevels. The
QoC level named high corresponds to the case where the
level of each of the three QoC parameters that we consider in
the scenario is high. The freshness is only 20% below the
maximum; the accuracy indicates that the estimated position
is less than 10m away from the real position; and the
trustworthiness is larger than 90%. With the QoC level
named medium, only the trustworthiness is below what is
expected in the previous case. Finally, the level named low is
even below. More levels could be defined, but by experience
these three levels are realistic and represent sufficiently
discriminating cases. The Flash sale service associated to the
different QoC levels differs with the added value it provides
to the user. When the QoC level is high, the application has a
sufficient confidence in the estimation of the location of the
user to guide them precisely. It displays an alert message
with the distance and the remaining time to reach the shop
where the flash sale takes place and also draws the route to
follow on the map. When the QoC level is medium, the route
is not displayed on the map. Finally, with a low QoC level,
the distance to walk is not displayed for the user and only the
remaining time is indicated.

quality high (freshness : Freshness,
 accuracy : Accuracy,
 trustworthiness : Trustworthiness) {
 freshness >= 0.8;
 accuracy < 10;
 trustworthiness >= 0,9; }

quality medium (freshness : Freshness,
 accuracy : Accuracy,
 trustworthiness : Trustworthiness) {
 freshness >= 0.8;
 accuracy < 10;
 trustworthiness < 0,9 ; }

quality low (freshness : Freshness,
 accuracy : Accuracy,
 trustworthiness : Trustworthiness) {
 freshness < 0.8;
 accuracy < 10;
 trustworthiness < 0,9; }

Figure 3. QoC levels for the Flash sale application

IV. MANAGING THE CONTEXT AND ITS ASSOCIATED

QUALITY

 We present in this section the implementation we have
realized on Android mobile phones for the Flash sale
application using the COSMOS framework [7]. As in the
previous sections, we focus on QoC concerns. Section IV-A
presents the context framework that we have complemented
with QoC capabilities. The component-based orientation of
the approach demonstrates the interest of the model-driven
engineering (MDE) approach: As the designers of the
context framework, we provide application designers with
libraries of components for instance to process the context
data and the QoC meta-data; the context framework is
extensible so that other designers can develop and provide
off-the-shelf components that get integrated into the context
framework for instance to take into account new QoC
parameters; application designers do not program inference
treatments of the raw context data and QoC meta-data they
collect but rather compose the architecture of the context
manager that fits their needs. Section IV-B presents such a
design: The application designer models the inference
treatments both of the context data and of the QoC meta-
data; these treatments are organized into a graph; the context
framework being a process-oriented component-based
context framework, the nodes of the graph correspond to
components and the graph corresponds to an architecture.
Finally, Section IV-C provides some details on the
realization of the illustrative scenario on mobile phones.

A. Context and QoC management with COSMOS

COSMOS is a process-oriented context manager that collects
raw context data from the different context sources and
transforms them to higher-level context data. COSMOS can
both be responsible for inferring high-level context data and
situations, or supply other inference engines with low-level
context data, for instance to ontology-based context
managers [4]. The processing is organized into a graph
representing a context policy which is a hierarchy of context
nodes. These nodes are implemented as software
components and can be shared across several context
policies. They perform basic context-related operations (e.g.,
gathering data from a system or network probe, computing
threshold or average values) and are assembled with a set of
well-identified architectural design patterns [29]. A library of
context operators allows designers to define new COSMOS
nodes by composition.
 Every context node of a context policy can be finely tuned
in order to control the flow of context data and to control the
operating system resources consumed for context processing,
more especially threads and memory space. Therefore,
COSMOS is available on a large number of mobile devices
including J2ME phones and Android phones. COSMOS is
implemented as an open source framework
(http://picolibre.int-evry.fr/projects/cosmos). As shown in
[1], COSMOS manages QoC thanks to a QoC context node
composed of a QoCAwareOperator and QoCParameter
components. We manipulate QoC separately from context
data since we consider QoC as an additional concern of

Figure 4. COSMOS context policy with QoC of the Flash sale application

context management. This allows for a flexible QoC
management, which is activated only when necessary. This
further opens the way for performance optimization like
computing the QoC on a set of context data and not simply
for each sensed data. Moreover, each QoCParameter
component computes a specific QoC parameter such as
accuracy, freshness, etc. As a consequence, for a given
application, application designers select the relevant QoC
parameters in the library of COSMOS QoCParameter
components and compose their QoC context nodes.

B. COSMOS context policy of the Flash sale application

 We show on Figure 4 the COSMOS context policy
defined for the Flash sale application. It takes advantage of
the available positioning technologies, such as cellular
networks, wireless radio and GPS, and determines a
stabilized location choice. This choice is guided by the QoC
of the location information. As introduced in section III-B,
we consider three QoC parameters for the location
information, that are the accuracy (noted A), the freshness
(noted F) and the trustworthiness (noted T). We distinguish
the QoC parameters that are collected from context sources
by the data acquisition layer from the QoC parameters that
are computed by inference following the paths of the context
policy. With satellite positioning technologies, an accuracy
measure may be provided with the position. This is the case
for Assisted-GPS [30]. Therefore, we indicate on Figure 4
that the accuracy parameter is collected by the GPS manager.
For the other positioning technologies, the accuracy is
measured via statistics derived from experimental

observations. The trustworthiness is computed by the
COSMOS framework and depends on the location source.
For instance, with Wi-Fi communication, we derive a
trustworthiness measure from the strength of the received
radio signals [6]. The freshness parameter is also computed
by the COSMOS framework at the time the context data is
exploited, that is in the data interpretation layer. During the
inference process, the Stabilized location choice context
node determines the best location according to the values of
the trustworthiness, the freshness and the accuracy
parameters, in this order.
 As users are mobile, we take into account in the context
policy the speed of the movement of the user. The speed
vector is deduced from the position history of the user as
stored on the phone. This allows to adjust the location of the
users at a given time and to determine how much time they
might need to reach a given flash sale location. A freshness
QoC parameter is computed by COSMOS and associated to
the speed vector. The remaining part of the COSMOS
context policy directly derives from the context-awareness
model of the Flash sale application (see Figure 2). When a
flash sale is scheduled in the short term (information coming
from the Flash sale schedule node), the Flash sale offer
context node makes use of the location of the user, the
location of the shop where the flash sale is taking place and
the user’s movement speed to determine whether the flash
sale offer matches the user’s situation. If it is the case, the
New flash sale adaptation situation is detected and the Flash
sale service gets activated. Then, depending on the QoC

level of the user’s location, the appropriate service is
proposed to the user according to the Flash sale contract.
 The context nodes of the context policy shown on Figure 4
are to be deployed entirely on the mobile phone of the user.
We have designed the Flash sale offer application as an
autonomous application that can entirely run on the mobile
phone. Therefore, the deployment of the components
managing the global map of the mall center and the list of the
flash sales that are scheduled within the next hours occurs
when the user arrives nearby the mall. The map of the mall
center is displayed on the user’s phone screen with a focus
on the current location of the user. There is also a zoom
feature allowing the user to change the scale of the map. This
design removes any concern the users might have with
regard to the preservation of their privacy. The Mall center
information system does not get access to the location
information of the different clients. The users control the
knowledge of their own location which is stored only on
their mobile phone.

C. Implementation on a mobile phone

 We present in this subsection the prototype we
implemented to validate the Flash sale application. In this
section, we use the Siafu open source context simulator
(http://siafusimulator.sourceforge.net/) to generate context
information. By using a context simulator, we can better
experiment and measure the adequacy of our prototype with
more complex scenarios. We use it also for integration tests
before the validation tests with end-users. We have prepared
a map of the Évry 2 mall center and defined 17 product types
on which flash sales can be proposed. Network overlays can
also be defined and several access points can be positioned in
the mall. Moreover, the context simulator allows to simulate
very precisely the behavior of agents. Some anonymous
agents have a random behavior and other named agents, like
Celina, do have a well-defined behavior. Figure 5 shows the
full map of the mall center that is deployed on the mobile
phone. This map is then displayed on the screen with a
sufficient zoom level to be readable, centered on the user’s
location.
 We have developed the mobile application in Java and
tested it on Android phones. Figure 6 shows a screen copy of
the wireless toolkit phone emulator. As this is a prototype
built for demonstration purpose, we display the different
locations available on the phone which correspond actually
to internal information. A real application would only show
the chosen estimated location to the user. During the
simulation, an alert message gets displayed on the phone
screen when a Flash sale notification is received. Depending
on the QoC level, additional information is given in order to
guide the user towards the Flash sale.
We show on Figure 7 a screen copy of the case where a
Flash sale offer occurs and the location information is of a
high QoC level. This is the optimal case where full
information on the flash sale is given to the user with the
distance to the shop, the remaining time to go there and also
the route to follow displayed with dotted lines.
 Demonstrations were made to our industrial partners who
welcomed the new shopping experience brought to the users.

Figure. 5. Map of the mall center

Figure. 6. The multiple positions of Celina

Figure. 7. Flash sale offer notification

As malls are becoming very large, any information on shops
location is expected to be relevant and correct. Knowing the
quality of the location information brings an added-value to
the Flash sale application in terms of the quality of the user
experience.

V. RELATED WORK

Producing context-aware software is a very complex
task. MDE for context-awareness and context-management
is essential to ease the production of context-aware
applications. We present below related works for context-
awareness modeling and context management. This paper
focusing on QoC, we highlight when relevant the QoC
aspects of the related works.

Due to the variety of context data to be collected and
analyzed, context management requires the support of
abstract context modeling. The main families of context
modeling are profiling (e.g. CC/PP [18]), databases (e.g.,
CML [14]), ontologies (e.g., CONON [36]) and MDE. Our
work aims at using MDE for defining links between context
modeling to express complex context situations, and context-
awareness modeling to link context situations to application
entities.

ContextUML [32] is one of the first domain specific
model for context-awareness. It defines a meta-model for
modeling context-awareness of web services. Consequently,
web services elements such as Service, Operation and
Message are represented in the model as well as related
adaptation mechanisms of type Binding or Triggering.
CAPPUCINE [24] describes an MDE approach for
dynamically producing product lines according to context
information. CAPPUCINE and ContextUML put the stress
on adaptation mechanisms rather than on context modeling.
Our work enables application designers to express
interpreted context such as situations computed from
distributed context observations and include the analysis of
the QoC for driving the context-awareness of the application.

MLContext [16] is a DSL for modeling context. [17]
presents an extension of this DSL which integrates the QoC
in the expression of situations. A situation is then detected if
the context data it depends on fulfill the required QoC. The
model presented in our paper takes also into consideration
the context-awareness aspect of the business application.
Therefore, the middleware which uses the model is also able
to connect detected situations to appropriate business
services according to the QoC level.

[22] proposes an objective view of QoC, independent of
any application requirement, and a subjective view of QoC
considering its worth for a specific context requirement. Our
context-awareness meta-model is also generic and
independent of the applications, while the context-awareness
model takes into account the requirements of a given
application. However, the differentiating aspect of our work
lies in a model-driven approach to guide application
developers all along the software lifecycle from the design
phase to the execution phase as the context-awareness meta-
model and model can be accessed at runtime [35].

Concerning context management, many frameworks have
been proposed and have become references in the domain of
ubiquitous computing like the Context Toolkit [12], the
Contextor [9], [28], Draco [26], MoCA [10] or MoCoA [31].
However, context management frameworks integrating and
manipulating QoC are only beginning to appear and mainly
concern location information.

Middlewhere [27] relies on three metrics for determining
the quality of the location information: resolution, confidence
and freshness. It proposes an uncertainty model based on a
predicate representation of contexts allowing to use
mechanisms such as probabilistic logic, fuzzy logic and
Bayesian networks to fuse multiple sensor readings.
However, the resulting quality of location information is not
exposed to the applications and the models cannot easily be
extended by application developers.

Nexus [20,23] is an open platform to ease the
development of location-aware applications. It considers
three quality aspects through degradation, consistency and
trust. Nexus considers uncertainty as a key factor of location
information and proposes a generic mathematical uncertainty
model for position information [21]. This model is very
powerful but requires applications to specify probabilities in
order to perform position queries. We propose a more user-
friendly solution where the framework informs the user of
the obtained context quality rather than requiring the user to
restrict the search domain.

The LOC8 framework [33] is a recent effort to provide
application developers with easy access to location
information. LOC8 defines a quality matrix consisting of
granularity, frequency, coverage and a list of accuracy and
precision pairs. LOC8 also relies on a sensor fusion method,
with a default implementation based on fuzzy logic
integrating the confidence on location data. While our work
results from a similar effort to manipulate different sensor
data and to expose the knowledge of its quality, we promote
a fusion process that considers a larger set of quality criteria,
and not only confidence.

VI. CONCLUSION

In this paper, we promote a model-driven approach for
designing QoC-aware ubiquitous applications and introduce
the QoC-enabled part of the COSMOS context manager. We
demonstrate these two contributions through a Flash sale
offers application. This application has been experimented as
one the demonstrator applications of the CAPPUCINO
project (http://www.cappucino.fr) in which were involved
two large French chain stores. As for numerous mobile
distributed applications, location-awareness is essential for
the Flash sale application. We consider that location
information requires specific care to deal with its inherent
uncertainty and that applications need to have the knowledge
of this uncertainty level. We identify accuracy, freshness and
trustworthiness, as being the quality criteria that are
particularly relevant for location information, but other QoC
parameters are provided by our COSMOS context
management framework and this list can be extended at will.
With this prototype, we show that QoC may be used at
different levels: at the context management level, for
instance to choose the best location among several ones, and
at the application level, for instance to trigger the appropriate
service according to the current context situation and its QoC
level. This justifies the model-driven approach that we have
followed from the specification of context-awareness
contracts to the design of the architecture of the context
manager that runs on the mobile phone of the end-user.

To assert a given level of quality while using rapid
prototyping approaches, we show how well the model-driven
approach is adequate for designing context-aware ubiquitous
applications. As future work, we will keep applying the
model-driven approach to other concerns of the context-
awareness management for instance to enhance the privacy
of personal context data during the whole context
management process in multi-scale networks (ambient
environment, Internet, clouds) and over the Internet of
things. In addition, since it is a process-oriented component-
based context manager, we view COSMOS as the basis for
distributing both processing and flows of context data and
their QoC meta-data. This clearly opens new issues for QoC
management.

REFERENCES

[1] Z. Abid, S. Chabridon, and D. Conan. A framework for quality of
context management. In Proc. 1st Int. Workshop on Quality of
Context, volume 5786 of LNCS, Stuttgart, Germany, June 2009.

[2] M. Baldauf, S. Dustdar, and F. Rosenberg. A Survey on Context
Aware Systems. International Journal of Ad Hoc and Ubiquitous
Computing, 2(4):263–277, 2007.

[3] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A.
Ranganathan, and D. Riboni. A survey of context modelling and
reasoning techniques. Pervasive and Mobile Computing, Elsevier,
6(2):161-180, 2010.

[4] A. Bouzeghoub, C. Taconet, A. Jarraya, N.K. Do, and D. Conan.
Complementarity of Process-oriented and Ontology-based Context
Managers to Identify Situations. In Proc. 5th ICDIM, Thunder Bay,
Canada, June 2010.

[5] T. Buchholz, A. Kupper, and M. Schiffers. Quality of context
information: What it is and why we need it. In 10th Int. Workshop of
the HPOVUA, Geneva, Switzerland, July 2003.

[6] S. Chabridon, C-C. Ngo, Z. Abid, D. Conan, C. Taconet, and A.
Ozanne. Towards QoC-aware location-based services, Proc. 11th IFIP
DAIS, vol. 6723 of LNCS, Reykjavik, Iceland, June 2011, Springer.

[7] D. Conan, R. Rouvoy, and L. Seinturier. Scalable Processing of
Context Information with COSMOS. In Proc. 6th IFIP DAIS, volume
4531 of LNCS, pp. 210–224, Cyprus, June 2007. Springer.

[8] J. Coutaz, J.L. Crowley, S. Dobson, and D. Garlan. Context is key.
CACM, 48(3):53, 2005.

[9] J. Coutaz and G. Rey. Foundations for a Theory of Contextors. In C.
Kolski and J. Vanderdonckt, editors, Proc. 4th Int. Conf. on
Computer-Aided Design of User Interfaces, pp. 13–34, Valenciennes
(France), May 2002. Kluwer.

[10] R.C.A. da Rocha and M. Endler. Evolutionary and Efficient Context
Management in Heterogeneous Environments. In Proc. 3rd Int.
Workshop on Middleware for Pervasive and Ad-hoc Computing,
Grenoble (France), Nov. 2005.

[11] A.K. Dey and G.D. Abowd. Towards a better understanding of
context and context-awareness. In Proc. CHI Workshop on the what,
who, where, when, and how of context-awareness, pp.304–307, 2000.

[12] A.K. Dey, G.D. Abowd, and D. Salber. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware
applications. HCI, 16(2):97–166, 2001.

[13] K. Henricksen and J. Indulska. Modelling and using Imperfect
Context Information. In Proc. 1st PerCom Workshop CoMoRea, pp.
33–37, March 2004.

[14] K. Henricksen and J. Indulska. Developing context-aware pervasive
computing applications: Models and approach. Pervasive and Mobile
Computing, 2(1):37–64, Feb. 2006.

[15] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context
Information in Pervasive Computing Systems. Proc. 1st IEEE
PerCom, LNCS 2414, pp. 167–180, Zurich (Switzerland), Aug. 2002.

[16] J.R. Hoyos, J. Garca-Molina, and J.A. Bota. MLContext: A Context-
Modeling Language for Context-Aware Systems. In 3rd DisCoTec
CAMPUS Workshop, Amsterdam Pays-Bas, Jun. 2010.

[17] .J.R. Hoyos, D. Preuveneers, J.J. Garcia-Molina, and Y. Berbers. A
DSL for Context Quality Modeling in Context-aware Applications,
Proc. 2nd ISAMI, Springer, April 2011.

[18] G. Klyne and al. Composite Capability/Preference Profile (CC/PP):
Structure and vocabularies 2.0. W3C recommendation, april 2007.

[19] M. Krause and I. Hochstatter. Challenges in Modelling and Using
Quality of Context (QoC),;Mobility Aware Technologies and
Applications, volume 3744 of LNCS, pp. 324–333. Springer, 2005.

[20] R. Lange and al. Making the World Wide Space Happen: New
Challenges for the Nexus Context Platform. In Proc. 7th IEEE
PerCom, pp. 300–303, Galveston, TX, USA, March 2009.

[21] R. Lange and al. On a generic uncertainty model for position
information. In Proc. of 1st Int. Workshop on Quality of Context, pp.
76–87, Stuttgart, Germany, June 2009. Springer.

[22] A. Manzoor, H.-L. Truong, and S. Dustdar. Quality of Context:
Models and Applications for Context-aware Systems in Pervasive
Environments, The Knowledge Engineering Review, Special Issue on
Web and Mobile Information Services, 2011.

[23] Nexus Team. Reference Model for the Quality of Context
Information. Univ. Stuttgart, Feb. 2010.

[24] C. Parra, X. Blanc, and L. Duchien. Context Awareness for Dynamic
Service-Oriented Product Lines. In Proc. 13th SPLC, San Francisco,
CA, USA, August 2009.

[25] N. Paspallis, R. Rouvoy, P. Barone, G.A. Papadopoulos, F. Eliassen,
and A. Mamelli. A Pluggable and Reconfigurable Architecture for a
Context-aware Enabling Middleware System. In Proc. 10th DOA,
LNCS 5331, pp. 553–570, Monterrey, Mexico, Nov. 2008. Springer.

[26] D. Preuveneers and Y. Berbers. Adaptive Context Management Using
a Component-Based Approach, Proc. 5th IFIP DAIS, volume 3543 of
LNCS, pp.14–26, Athens (Greece), June 2005. Springer.

[27] [27] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and
M.D. Mickunas. MiddleWhere: A Middleware for Location
Awareness in Ubiquitous Computing Applications. Proc.
IFIP/ACM/USENIX Middleware, LNCS 3231, Toronto, Canada, Oct.
2004. Springer.

[28] G. Rey and J. Coutaz. The Contextor Infrastructure for Context-
Aware Computing. In Proc. ECOOP Workshop on Component-
oriented Approaches to Context-aware Computing, Oslo, June 2004.

[29] R. Rouvoy, D. Conan, and L. Seinturier. Software Architecture
Patterns for a Context Processing Middleware Framework. IEEE
DSO, 9(6), June 2008.

[30] N. Samama. Global Positioning: Technologies and Performance.
Wiley-Interscience, 2008.

[31] A. Senart, R. Cunningham, M. Bouroche, N. O’Connor, V. Reynolds,
and V. Cahill. MoCoA: Customisable Middleware for Context-Aware
Mobile Applications. In Proc. 8th DOA, LNCS 4275, Montpellier
(France), Nov. 2006. Springer.

[32] Q.Z. Sheng and B. Benatallah. ContextUML: A UML-Based
Modeling Language for Model-Driven Development of Context-
Aware Web Services. In Proc. 4th IEEE ICMB, Sydney, 2005.

[33] G. Stevenson, J. Ye, S. Dobson, and P. Nixon. LOC8: A Location
Model and Extensible Framework for Programming with Location.
IEEE Pervasive Computing, 9:28–37, 2010.

[34] C. Taconet and Z. Kazi-Aoul. Building Context-Awareness Models
for Mobile Applications. JDIM, 8(2):78–87, April 2010.

[35] C. Taconet, Z. Kazi-Aoul, M. Zaier, and D. Conan. CA3M: A
Runtime Model and a Middleware for Dynamic Context
Management, Proc. 11th DOA, LNCS 5870, Portugal, Nov. 2009.

[36] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology Based
Context Modeling and Reasoning using OWL. In Proc. 2nd IEEE
PerCom, pp.18–22, Orlando, FL, USA, March 2004.

