
Failure, Disconnection and Partition Detection in Mobile
Environment

Denis Conan
Institut TELECOM, SudParis, UMR CNRS Samovar

9 rue Charles Fourier, 91011 Évry, France
Denis.Conan@it-sudparis.eu

Pierre Sens, Luciana Arantes, and Mathieu Bouillaguet
LIP6 — Université de Paris 6 — INRIA

4 Place Jussieu, 75252 Paris Cedex 05, France
Pierre.Sens,Luciana.Arantes,Mathieu.Bouillaguet@lip6.fr

Abstract

In mobile environment, nodes can move around and voluntarily leave or join the network.

Furthermore, they can crash or be disconnected from the network due to the absence of

network signals. Therefore, failure, disconnection and mobility may create partitions in

wireless networks which should be detected for fault and disconnection tolerance reasons.

We present in this article an architecture of local and distributed detectors for mobile

networks that detect failures, disconnections, and partitions. It is basically composed of

three unreliable detectors: a heartbeat failure detector, a vector-based disconnection detec-

tor, and an eventually perfect partition detector.

1 Introduction

Recent advancements in wireless data networking and portable information appliances have

given rise to the concept of mobile computing. Users can access information and services

irrespective of their movement and physical location. However, such an environment is extremely

dynamic: Nodes can voluntarily disconnect themselves or move around; absence of wireless

network signals can disconnect nodes from the network; nodes can fail and messages can be lost.

Consequently, failure, disconnection, or mobility may cause a node or several of them to detach

from the rest of the network, creating one or more network partitions. Another particularity

of mobile environment is the fact that links are not bidirectional because, in practice, the

two processes cannot rely on the same physical and logical resources in both directions. For

argument’s sake, small devices like PDAs consume more power energy for emitting than for

1

receiving messages on wireless networks, thus leading to non-uniform radio range.

As the geographic extent of the system grows or its connectivity weakens, network partitions

tend to be more frequent. They may result in a reduction or degradation of services but not

necessarily render the application completely unavailable. Partitions should keep working as

autonomous distributed systems offering services to their clients as far as possible. Algorithms

that should benefit from a partition detector module are for instance distributed consensus in

partitionable networks, and resources allocation and placement in dynamic networks. There-

fore, a mechanism for providing information to the application about network partition is highly

important in wireless environments, and is the focus of this paper. We propose an eventually

perfect unreliable partition detector for wireless systems. Similarly to an unreliable failure de-

tector [5], an unreliable partition detector can be considered as a per process oracle, which

periodically provides, for each process p, a list of processes suspected to be unreachable, that

is those processes which are suspected of being in another partition than p’s one. A partition

detector is unreliable in the sense that it can make mistakes. Two properties characterise a

failure detector: completeness and accuracy. Roughly speaking, completeness sets requirements

in respect to crashed processes, while accuracy restricts the number of false suspicions. By anal-

ogy, these two properties also characterise our partition detector, but with respect to reachable

processes. Thus, our partition detector assures the following completeness and accuracy prop-

erties: A process p, which is correct, eventually detects every process that does not take part in

p’s partition; and p eventually stops suspecting correct processes that belong to its partition.

Our partition detector is able to detect partitions due to disconnections as well as failures.

The ultimate goal of characterising the nature of the partition is to help the decision-making

process of applying countermeasures for fault tolerance and disconnection tolerance: e.g, remove

a faulty participant from a vote and wait for disconnected ones. Hence, in order to build our

partition detector, a failure detector and a disconnection detector are required. Both detectors

participate in our solution and the partition detector exploits information provided by them.

For detecting failures, we have chosen the class of heartbeat (HB) failure detectors, pro-

posed by [1, 2]. The reasons for such a choice are multiple. Firstly, HB failure detectors can be

used to achieve quiescent reliable communication, that is fair links that eventually stop send-

ing messages, on top of asynchronous partitionable networks, that is asynchronous distributed

systems that can partition. They allow the conception of a quiescent stubborn broadcast prim-

itive (QSB) which both the disconnection detector and the partition detector of our solution

2

need for broadcasting information over the network. The stubborn property [7, 8] is of utmost

importance for energy and memory-constrained mobile applications. Furthermore, wireless com-

munication is significantly less reliable than wired one. Thus, the quiescent stubborn broadcast

primitive, which is built on top of fair lossy channels, allows to circumvent the problem of mes-

sage losses. Another important feature of HB failure detectors in our solution is that they do

not output a list of suspected processes, but a vector of counters, one heartbeat counter per

process. Our partition detector makes use of such a vector for detecting network partitions: At

each process p, the heartbeat sequence of a process which is not in the same partition as p is

bounded. Finally, the HB failure detector algorithm of [1, 2] also offers information about the

topology of the network reachable through neighbours. We have then extended it in order to

provide for each process p the information about the set of processes which are mutually reach-

able from p through its own neighbours. This information is used by our partition detector to

monitor the mobility of the terminals and the dynamic nature of ad hoc networks.

In our approach, we consider that there is a local connectivity module at each mobile node

which is responsible for informing whether that node can send messages or not [10]. It monitors

resources such as energy power, memory space and wireless link quality by controlling one

of their attributes such that, when the raw value of the attribute is below some threshold,

the mobile node is disconnected. The objective of a connectivity module is to establish a

connectivity mode (from strongly connected to disconnected) in a stabilised manner. However,

such connectivity information needs to be spread over the network. Hence, when a node is

locally notified of its disconnection, the disconnection detector that we propose will “try” to

spread the disconnection information over the network, through its neighbours, by calling the

broadcast primitive mentioned above.

The contribution of our paper is then threefold: (1) a modified version of the HB failure

detector of [1, 2] which besides offering information about failure suspicions and the possibility

of building a quiescent stubborn reliable broadcast primitive, provides information about the

reachability of nodes; (2) an unreliable disconnection detector that broadcasts disconnection

information through the network; and (3) an eventually perfect partition detector that, based

on the information given by the two previous detectors, detects network partitions.

The remainder of this paper is organised as follows. In Section 2, we set out the distributed

system model. Section 3 presents our global architecture and the basic primitives used through-

out the paper. Section 4 describes the heartbeat failure detector for partitionable networks with

3

terminal mobility and explains how the original algorithm was modified. The disconnection de-

tector is presented in Section 5, and the partition detector in Section 6. We compare our

contribution with related work in section 7 while section 8 concludes our work.

2 Distributed System Model

We consider a partially synchronous distributed system in which there are bounds on process

speeds and on message transmission delays, these bounds are unknown, but they hold after some

unknown time, which is called GST for Global Stabilisation Time [5]. The system consists of a

set of n processes Π = {p1, p2 ..., pn}. The network of processes is a directed graph G = (Π, Λ)

where Λ ⊂ Π×Π. The topology of the graph changes due to node movements and node failures,

but the set of participants Π to the distributed application is known. Without lack of generality,

we assume that there is one process per mobile terminal. Process q is a neighbour of process p

if and only if there is an unidirectional link from p to q.

Failure model Processes and links can fail by crashing, that is by prematurely halting and

then stopping performing any further action for ever. During the execution, by definition,

processes and link that have not crashed are said to be correct. In addition, correct links are

fair lossy. A fair (lossy) link may lose messages, but if a process p repeatedly sends a message

m to process q, then q eventually receives m.

Disconnection model Processes can disconnect1 and reconnect. In connected mode, a pro-

cess may send a message to its neighbours, while in disconnected mode, the resources of the

process terminal are too low to send any application message but control messages may be

transmitted for a while. We assume that every process ends its execution while being con-

nected and does not crash while being disconnected. In practice, the assumption means that

the disconnected, and then terminating or faulty process does not succeed in leaving the set of

participants Π. Then, a mechanism of leases at the application level will make the incriminated

process leaving the set of participants. In the sequel, this translates into the assumption that

a terminal that disconnects eventually reconnects. A moving node first disconnects from the

network then it moves to a new location and finally reconnect to the network. We assume that
1Note that we consider that when a node disconnects, it disconnects from all the nodes, not only from a

particular node. The topology changes are gathered in the concept of neighbourhood.

4

mobile terminals eventually stop moving.

Partition model Following the terminology given in [1, 2], the network is said to be par-

titionable, that is a network in which some links may be unidirectional and may crash. By

definition, a fair path between processes p and q is a path containing only fair links and correct

processes, and a simple fair path is a fair path in which no process appears more than once.

In addition, process q is said to be reachable from process p if there exists a fair path between

p and q, otherwise it is unreachable. p and q are mutually reachable if there exists a fair path

between p and q, and a fair path between q and p. Then, the p’s partition, denoted partition(p),

is the set of correct processes mutually reachable by process p.

3 Unreliable detection modules and basic communication prim-

itives

Figure 1 presents our global architecture. On each node, we provide a basic layer (BL). The

function of this layer is twofold. Firstly, it establishes a connectivity mode (from strongly con-

nected to disconnected) in a stabilised manner. Secondly, it provides a list of current neighbours

(nghset) by periodically calling the networking layer. By analogy with the participant detector

of [4], the neighbourhood detector does not make any mistake: It is perfect. The very reason is

that we can’t verify whether logical connections are correctly managed, or whether network con-

figuration data are correct. For instance, if the underlying operating system makes a mistake,

the mobile terminal will find the links faulty (false positive) or will not use opened connections

(false negative). Each change in mode and nghset is notified to the upper layers.

EPPD

mreachable

mode

out

HB dv

QSB
HBFD VBDD

BL

nghset

Figure 1: Overview of the software architecture of a node

On each node p, two detectors are plugged onto BL: The heartbeat failure detector (HBFD)

and the vector-based disconnection detector (VBDD). HBFD outputs a vector HB of heartbeat

5

counters, one entry per process, and a set of mutually reachable processes mreachable. VBDD

outputs a vector dv of disconnection counters, one entry per process. Disconnections and (re-

)connections are numbered: Disconnection events are odd-numbered and reconnection events

are even-numbered.

At the upper level of node p, the eventually perfect partition detector EPPD uses informa-

tion provided by both HBFD and VBDD to compute the set out, that is the set of processes

not in p’s partition. Based on HBFD, we provide a quiescent stubborn broadcast primitive QSB

used by VBDD to broadcast disconnection and reconnection information.

HBFD, VBDD and EPPD are characterised by both completeness and accuracy properties

defined as follows:

• HB-Completeness: At each correct process p, the heartbeat counter of every process not

in partition(p) is bounded.

• HB-Accuracy: At each correct process p, the heartbeat counter of every process is non-

decreasing. The heartbeat counter of every process in partition(p) is unbounded.

• VBDD-Completeness: Eventually all disconnections and reconnections of correct process

p are seen by every correct process in partition(p).

• VBDD-Accuracy: No process sees a disconnection (resp. reconnection) before the discon-

nection (resp. reconnection) effectively occurs.

• EPPD-Completeness (Strong partition completeness): If some process q remains unreach-

able from a correct process p, then eventually p will always suspect q of not belonging to

partition(p).

• EPPD-Accuracy (Eventual strong partition accuracy): If some process q remains reachable

from a correct process p, then eventually p will no longer suspect q of not belonging to

partition(p).

Each process can use the following primitives to communicate:

• send(dest, m)/receive(from, m) : Two basic point-to-point communication functions to

send (resp. receive) message m to (resp. from) its neighbour dest (resp. from).

When information is locally exchanged between local detectors, local_send(dest, m) and

6

local_receive(from, m) functions are used where from and dest are the name of the

component (HBFD, VBDD, or BL).

• broadcast(m): This function broadcast called QSB message m over fair links to all the

correct processes in the partition of the correct sender. This primitive provides the ab-

straction of stubborn links hiding the retransmission mechanisms used to make somewhat

reliable the transmission of messages. A formulation of the stubborn delivery property is

as follows [7]: If the sender p, which does not crash, sends a message m to q that is correct,

and p is able to indefinitely delay the sending of any further message, then q eventually

receives m. An important practical consideration is that stubborn links require only a

bounded buffer space (minimum of one message). The quiescence property ensures that

only a finite number of messages are sent when broadcast is invoked a finite number of

times, even if processes involved in broadcasting move to other partitions (only a finite

number of messages are sent in the latter partitions). QSB uses HBFD. Due to the lack

of space, we do not present the broadcast algorithm in this paper; the algorithm is a direct

modification of the quiescent broadcast primitive given in [2] (Figure 3) in order to add

the stubborn property as presented in [7].

4 Failure detection

Our failure detector HBFD is based on the class of heartbeat failure detectors proposed by [1, 2].

Such a choice is firstly explained by the need to build quiescent algorithms, that is algorithms

that eventually stop sending messages in partitionable networks. In [2], the authors prove that

quiescent reliable communication are impossible with classical failure detectors whose imple-

mentation provides output of bounded size (e.g., list of suspects has bounded size). Hence,

they propose in the paper the class of heartbeat failure detectors which can be used to circum-

vent this impossibility result. Another reason that justifies our choice is that heartbeat failure

detectors are not time-out-based.

Heartbeat failure detectors provide for each process p a vector of counters HB =

[n1, n2, ..., nk] where each nj is a positive integer corresponding to the number of heartbeats

received by process p from process pj . Thus, nj is the “heartbeat value of pj at p”. Intuitively,

nj increases as long as pj is correct, not disconnected, and in partition(p). Notice that heart-

beat failure detectors provide the vector HB without any treatment or interpretation. Then,

7

other detectors, as our partition detector EPPD, can periodically obtain the current value of

HB vector from HBFD in order to deduce lists of suspected processes.

Beside the heartbeat vector HB, our failure detector HBFD gives information about the

topology of the network since each process keeps information about which processes can be

reachable through its neighbours. For each neighbour r of process p, HBFD builds the set of

processes mutually reachable from p through r. This set is called the reachablility set of p

through r and the vector mreachable gathers the set of reachability sets of all the neighbours

of p. The property of mutual reachability can be expressed as follows: At each correct process

p, for each neighbour r, the reachability set for r (mreachable[r]) eventually contains all the

correct processes (e.g., q), such that there is a simple fair path from p to q through r and a

simple fair path from q to p. Furthermore, HBFD can also accept requests for emptying some

of the reachability sets in order to restart an accumulation phase of topology discovery. This

functionality is used by our partition detection EPPD, described in Section 6, when a failure

or a disconnection is detected.

HBFD which runs on each node p is presented in Algorithm 1. It is based on the algorithm

for partitionable networks described in [1]. The changes we have made are related to the

addition of nodes mobility and the discovery of the network topology through neighbours. The

variables HB and mreachable respectively store the per process heartbeat counters and the

per process mutual reachability sets, as previously described. The set nghbrs controls the

current neighbours of p, while the set paths gathers all the paths of which p is aware since

its last heartbeat sending. Algorithm 1 is executed by process p (p ∈ Π), and it is divided

into five parallel tasks. It provides to the upper client, e.g. the partition detector EPPD, the

heartbeat vector HB and the reachability sets (sets of mreacheable) (line 16). The principle of

the algorithm is the piggy-backing of fair paths in heartbeat messages.

The first task (lines 1–5) corresponds to the code block executed at the creation of the

heartbeat failure detector. The second task (lines 6–9) is triggered when the neighbourhood

changes. Such an information, nghset, is provided by BL (cf. Section 3). This task controls the

mobility of nodes and therefore the current set nghbrs of neighbours of p (line 9). Furthermore,

the entries of mreachable corresponding to those processes that are no longer neighbours of p

are set to empty (line 7) since they cannot be reached anymore from p through old neighbours.

However, new neighbours of p are seen as reachable (line 8).

In the third task (lines 10–16), process p periodically increments its own heartbeat and adds

8

Algorithm 1: Heartbeat Failure Detector HBFD
1 upon initialisation do
2 nghbrs← ∅ {neighbourhood at p}
3 HB[1..|Π|]← {0, ..., 0} {heartbeat vector at p}
4 mreachable[1..|Π|]← {∅, ..., ∅} {processes reachable through neighbours from p}
5 paths← ∅ {set of paths received in heartbeats during last period of time}
6 upon local_receive(BL,nghset) do
7 for all q ∈ nghbrs \ nghset do mreachable[q]← ∅
8 for all q ∈ nghset \ nghbrs do mreachable[q]← {q}
9 nghbrs← nghset
10 periodically do
11 HB[p]← HB[p] + 1
12 paths← paths ∪ {{p}}
13 for all path ∈ paths : (∃r ∈ path : r appears more than twice in path) do paths← paths \ path
14 for all q ∈ nghbrs do send(q,〈HBFD, paths〉)
15 paths← ∅
16 local_send(EPPD, 〈HBFD, HB, mreachable〉)
17 upon receive(q,〈HBFD, pathsq〉) do
18 for all path ∈ pathsq do
19 for all r ∈ Π : r appears after p in path do HB[r]← HB[r] + 1
20 if ∃r ∈ Π : r appears right next to p in path then
21 for all s ∈ Π : s appears after r in path do mreachable[r]← mreachable[r] ∪ {s}
22 endif
23 paths← paths ∪ {(path · p)}
24 endfor
25 upon local_receive(EPPD,〈EPPD, procset〉) do
26 for all s ∈ procset do mreachable[s]← ∅

itself to paths, which already contains all paths received in heartbeat messages during the last

period of time. However, before sending to all its neighbours a new heartbeat message which

includes such a variable (line 14), p verifies in line 13 if its previous heartbeat messages have not

already completed two cycles. In this case, such a path will be removed from paths (line 13). As

shown in the example of the execution of the algorithm described below, some topology requires

that heartbeat messages complete two cycles in order to ensure that processes correctly update

their mutually reachable sets. At the end of the third task, the heartbeat failure detector notifies

its clients, EPPD in our case, about new updated information concerning the heartbeat vectors

and reachability sets (line 16).

The fourth task (lines 17–24) handles the reception of messages by p of the form

〈HBFD, paths〉. Upon receiving it from process q, for each path ∈ paths with path =

(p1 · ... · pi · p · r · pj · ... · pk · q), p adds the processes (pj · ... · pk · q), which appears after

its neighbour r, to mreachable[r] (lines 20–21). Therefore, mreachable[r] contains a list of

processes that can be mutually reached from p through r. In addition, process p increases the

heartbeat counters of all the processes that appear after p in path, that is all the processes of

the sequence (r · pj · ... · pk · q) (line 19), since they are not suspected by p. Process p appends

then itself to path and stores the new path in paths (line 23). Notice that in this case, p is also

reachable from (pj · ... · pk · q) through their respective neighbours.

9

Finally, the fifth task (lines 25–26) empties some entries of mreachable. As previously

explained, this functionality is used by the partition detector EPPD, described in section 6.

Example of execution of HBFD

In order to explain how nodes dynamically discover which are the other nodes reachable through

their respective neighbours, we show in Figure 2 the scenario of an execution of Algorithm 1,

considering a topology with five nodes.

1

4

3 5

2

1

3

2

4

5

paths = {{1}}
1

paths = {{1,2},{2}}
2

1

4

3

2

1

3 5

2

4

1

4

3 5

2

1

4

3 5

2

paths = {{1,2,3}{2,3},{3}}

(c)

(g)

{3,4,5,2,1},{4,5,2,1},{5,2,1},{2,1}}
paths = {{1,2,1},{2,1},{1,2,3,4,5,2,1},{2,3,4,5,2,1},

(a) (b) (d)

5 3

paths = {{1,2,1},{2,1}} paths = {{1,2,1},{2,1}}
11

paths = {{1,2,3,4}{2,3,4},{3,4},{4}}
4

1

paths = {{1,2,1},{2,1}}
1

(f)

paths = {{1,2,1},{2,1}}
1

1

4

3 5

2

(e)

paths = {{1,2,3,4,5}{2,3,4,5},
{3,4,5},{4,5},{5}}5

paths = {{1,2,3,4,5,2},{2,3,5,2},
2 {2,3,4,5,2},{4,5,2},{5,2},{2}}

mreachable [3] ={2,4,5}
2

mreachable [2] ={1,2,3,4,5}
1

Figure 2: Example of reachability set dynamic construction

Node 1 starts by sending to its neighbour node 2 a heartbeat message that contains the

variable paths1 which, in this case, includes just itself, as shown in Figure 2.(a) (line 12). Upon

receiving it (cf. Figure 2.(b)), node 2 appends itself to all the received paths, adding the latter

to its variable paths2 (line 23). Notice that it does not update its variable mreachable2 since

it is not included in any of the received paths. Next, the set {2} is being added to paths2

(line 12) and a new heartbeat message is sent to its neighbours. Both nodes 1 and 3, outgoing

neighbours of 2, receive it.

In Figure 2.(c), both nodes 1 and 3 receive the above heartbeat message, while in Fig-

ures 2.(d) and 2.(e), node 4 receives the heartbeat messages sent by node 3, and node 5 receives

the heartbeat messages sent by node 4, respectively. Next, when node 2 receives the heartbeat

message from node 5 (cf. Figure 2.(f)), it finds itself in some of the received paths. Therefore,

10

line 21 of the algorithm is executed and node 2 adds nodes 4 and 5 to mreachable2[3], that is

these nodes are mutually reachable from node 2 through its neighbour node 3.

Finally, Figure 2.(g) shows that the content of variable paths1 of node 1 after having received

the second heartbeat message from node 2. In the scenario, we consider that node 1 has not

sent any new heartbeat message after the reception of the first heartbeat message from node 2.

Node 1 then updates its variable mreachable (mreachable1[2] = {2, 3, 4, 5}) since these nodes

appear after its neighbour 2 in path {1, 2, 3, 4, 5, 2, 1}.

Sketch of proof HB-completeness: The proof is by contradiction. Let q be a process that

is not in the partition of p (p 6= q). Assumes that HB[q] is not bounded. Then, p receives an

infinite number of times messages 〈HBFD, paths〉, where there exists a path P in paths which

contains q after p. This path is of the form P = (p1 · . . . · p · . . . · q · . . . · pk). Since p receives an

infinite number of messages from pk, the link pk → p is fair. By repeated application, for each

j = k − 1, . . . , 1, the link pj → pj+1 is fair. Thus, in P , (p · . . . · q) is a fair path from p to q

and (q · . . . · pk · p) is a fair path from q to p. Therefore, p and q are in the same partition —a

contradiction.

HB-accuracy: The first part (the heartbeat counter of every process is nondecreasing) is

obvious since HB[q] can only be changed in lines 11 and 19. For the second part (the heartbeat

counter of every process in the partition of p is unbounded), two cases are possible. Let q be

a process in the partition of p. If q = p, then line 11 is executed infinitely often (since p is

correct) and HB[p] at p is unbounded. Now, assume q 6= p and let (p1 · . . . · pi) be a simple fair

path from p to q, and (pi · . . . · pk) be a simple fair path from q to p, so that p1 = pk = p and

pi = q. For j = 1, . . . , k −1, let Pj = (p1 · . . . ·pj). By induction on j, we can show that, for each

j = 1, . . . , k − 1, pj sends messages 〈HBFD, paths〉 to pj+1 an infinite number of times, where

there is a path P in paths such that P = subpath · Pj . For j = k − 1, this claim shows that

a neighbour of p sends messages M = 〈HBFD, paths〉 to p an infinite number of times, where

there is a path P
′ in paths such that P

′ = subpath · Pk−1. Since p is correct and by the fairness

property of the links, p receives messages of the form of M an infinite number of times. Since q

appears after p in Pk−1, HB[q] is incremented an infinite number of times (line 19). Therefore,

HB[q] is unbounded.

11

5 Disconnection detection

The connectivity information provided by BL (cf. Section 3) remains local to the mobile node.

Hence, as we want in our approach to make the difference between a disconnection and a failure,

the disconnection/reconnection information of nodes should be spread over the network.

We consider that when a node is disconnected from the network, its does not send application

messages anymore. However, this does not mean that control messages sent by fair links cannot

be transmitted; in other words, physical transmission may be still possible for a while. Contrary

to failures which are unexpected, there is a lapse of time between the connectivity detection

of the mode “disconnected” and the effective physical disconnection. Such a lapse of time can

be used for alerting remote processes of a node disconnection. Clearly, in the case of a sudden

disconnection, no disconnection message can be sent and the disconnection will be detected as a

failure by the failure detector that runs on correct and connected processes. This false suspicion

will last for the duration of the disconnection and will be corrected when the disconnected

process reconnects. On the other hand, in the case in which the end-user disconnects their-

self voluntarily, we consider that the middleware service responsible for isolating the user’s

node waits for a short while before actually performing the disconnection, thus allowing the

transmission of control messages before the interruption of communication.

Then, we introduce the concept of unreliable vector-based disconnection detector, VBDD,

similar to the one of unreliable failure detection. When a process is notified of a disconnection

either by BL or voluntarily by the end-user, VBDD “tries” to transmit the disconnection infor-

mation to all the processes by calling QSB. VBDD builds thus a coherent distributed view of

disconnection events.

By analogy with heartbeat failure detectors, the disconnection detector does not output

a list of disconnected processes, but provides a per process vector, named dv, of disconnec-

tion/reconnection event counters. If dv[q] of process p contains an even value, q is considered

to be seen as connected by p, otherwise it is considered to be disconnected. Notice that such an

interpretation of the disconnection vector’s entries is done afterwards by the partition detector

EPPD. It is worth mentioning that VBDD considers only disconnection/reconnection of correct

processes. Indeed, by construction, the disconnection detector is not able to suspect processes

of being faulty. So, as mentioned in Section 2, we assume that every process does not crash

while being disconnected.

12

The algorithm for process p of our disconnection detector VBDD for partitionable networks

which supports node mobility is presented in Algorithm 2. It has four tasks. The principle

of the algorithm is to broadcast via QSB the disconnection vector dv into VBDD messages

when one of the following events is triggered: New neighbourhood, voluntary disconnection,

connectivity mode change, or delivery of a VBDD message with new information. The local

vector dv keeps information about process disconnection/reconnection, as previously described.

The local variable voluntaryDisc indicates whether the end-user has requested a voluntary

disconnection, and mode is a variable which is updated with the information provided by BL

about the connectivity of node p itself, the latter information being inferred from raw data from

the execution context. Thus, by considering the information about both voluntary disconnection

and local connectivity, VBDD infers the logical connectivity of p, which it stores in dv[p].

The first task (lines 1–4) corresponds to the code block executed at the creation of the

disconnection detector. Every process is considered to be connected at the beginning of the

execution (lines 2–4). The next task (lines 5–10) allows the end-user to voluntarily discon-

nect or reconnect (by opposition to involuntary disconnections or reconnections detected by

BL). The assignment of the variable voluntaryDisc (line 6) is followed by the propagation of

this new disconnection event to every neighbour (line 9). Naturally, voluntary disconnections

outdo involuntary disconnections/reconnections. Thus, when p is not already disconnected,

either voluntarily or involuntarily (mode 6=‘d’), a voluntary disconnection effectively discon-

nects the process. Similarly, when p is currently voluntarily disconnected and involuntarily

connected (mode 6=‘d’), a voluntary reconnection effectively reconnects the process. The third

task (lines 12–18) is executed when there is a change in the connectivity mode which is detected

by BL. If the node becomes disconnected or connected, and the end-user did not ask for a

voluntary disconnection (condition of the if at line 13), p broadcasts the new disconnection

event (line 15).

The last task (lines 19–24) is responsible for the updating of the disconnection vector as

a result of the delivery of a newly-received disconnection vector (dvq), contained in a VBDD

message. At line 20, dv is compared with dvq. If one or more of the values of dv entries

are smaller than the dvq’s ones, dv is updated with the maximum of the entries of the two

vectors (line 21) and dv is broadcast (line 22). This new disconnection message is going to

update the disconnection vector of other processes that might not be aware of some disconnec-

tion/reconnection events. At p, VBDD then provides to the upper detector EPPD, which runs

13

on p, the disconnection vector dv (line 23).

Algorithm 2: Vector-based disconnection detector VBDD
1 upon initialisation do
2 dv[1..|Π|]← {0, ..., 0} {Vector of disconnection sequence numbers at p}
3 voluntaryDisc← false {true if voluntary disconnection of p}
4 mode← ‘c’ {connectivity mode at p}
5 upon voluntary disconnection/reconnection by the end user do
6 voluntaryDisc = ¬voluntaryDisc
7 if mode 6= ‘d’ then
8 dv[p]← dv[p] + 1
9 broadcast(〈VBDD, dv〉)
10 local_send(EPPD,〈VBDD, dv〉)
11 endif
12 upon local_receive(BL,newMode) do
13 if newMode 6= mode ∧ ¬voluntaryDisc then
14 dv[p]← dv[p] + 1
15 broadcast(〈VBDD, dv〉)
16 local_send(EPPD,〈VBDD, dv〉)
17 endif
18 mode← newMmode
19 upon receive(q,〈VBDD, dvq〉) do
20 if ¬(∀r ∈ Π : dv[r] ≥ dvq[r]) then {¬(dv ≥ dvq)}
21 for all r ∈ Π do dv[r]← max(dv[r], dvq[r])
22 broadcast(〈VBDD, dv〉)
23 local_send(EPPD,〈VBDD, dv〉)
24 endif

Sketch of proof VBDD-completeness: In the following, the generic expression “disconnection

event” is used to refer to all VBDD messages. There are four possible cases: (1) p successfully

sends a VBDD message to all its neighbours; (2) p is physically disconnected just before sending

a VBDD message; (3) p successfully sends the disconnection event to at least one correct and

connected process q; and (4) p moves. In the first case, by the stubborn delivery property

(Section 3 page 7), all the correct processes in partition(p) eventually deliver a VBDD message

containing a disconnection vector greater than or equal to dv. In the second case, the VBDD

message is sent whenever p reconnects. This is because of the properties of the stubborn

primitive: Messages are saved in the mobile terminal’s buffer and are sent when the terminal

reconnects. p then successfully disseminates this message or a newer one as done in the first

case. In the third case, if q is not physically disconnected after delivering the disconnection event

of p, then it successfully disseminates this event as done in the first case. But, if q is physically

disconnected right after the delivery of the VBDD message of p, again, the disconnection event

or a newer one is disseminated whenever process p or q reconnects to the network, as in the

second case. Finally, if q successfully transmits the disconnection event to at least one of its

neighbours, this is again the third case by recursion. Clearly, by the stubborn delivery property,

a VBDD message containing dv or a greater dv is eventually delivered by all the correct processes

14

in partition(p). In the last case, neighbourhood changes provoke the broadcasting of a VBDD

message to the new neighbourhood. Clearly, the decomposition into the first three cases just

studied before is also valid, leading to the same conclusion.

VBDD-accuracy: First of all, notice that the pth entry of the disconnection vector is only

incremented at process p when p executes the code statements corresponding to voluntary

disconnections/reconnections (line 5) or to involuntary disconnections/reconnections (line 12).

Next, other processes update the pth entry of their disconnection vector only when treating

VBDD messages. Therefore, the pth entry of the disconnection vector of process q (q 6= p) is

always less than or equal to the pth entry of the disconnection vector of p.

6 Partition Detection

A network can become partitioned due to link or node failures as well as node disconnections.

In this section, we present a generic partition detector EPPD, which establishes, for process

p, the set of suspected processes which are not in partition(p). To this end, EPPD exploits

information given by both HBFD and VBDD.

EPPD has been defined based on the completeness and accuracy properties as described

in Section 3. Its specification is inspired from [3], where a failure detection for partitionable

group systems is presented. The authors formalise the stability conditions that are necessary for

solving group membership in asynchronous systems. The specification is close to our approach

because it is expressed by the reachability between pairs of processes rather than on individual

processes being correct or crashed. Considering process p, EPPD suspects those processes that

do not belong to the same partition of p. However, it provides a list of suspected processes

only for stabilised periods. Thus, the objective of EPPD is to allow algorithms, adapted for

partitionable networks, to terminate their execution with a smaller number of processes during

stabilised periods, that is during which partitions stabilise.

Algorithm 3 describes our partition detector EPPD. It tries to discover network partitions

using both the heartbeat vector and reachability information provided by HBFD, as well as

the disconnection vector provided by VBDD. All local variables are initialised in the first task

(lines 1–5). The set of suspected processes that do not belong to the same partition of p is

noted as out (for “out” of the partition). Hence, in order to be able to provide such a set,

we have introduced a time-out, which allows to build an eventually perfect detector based on

15

heartbeat vector values given by HBFD (see variables HB and prevHB). At the same time,

the reachability information is stored in variable mreach. EPPD also parses disconnection

vectors provided by VBDD (see variable dv).

The second task of EPPD (lines 6–13) monitors the disconnection events received from

VBDD. Each entry of the disconnection vector is analysed. When VBDD at process p notifies a

new disconnection of process q, all processes considered not to be reachable anymore from p due

to the disconnection of q (line 8), are added to out by the call of the procedure add (lines 26–33).

The latter procedure parses the reachability sets to detect which are the processes that became

unreachable from p, that is processes that are no more reachable through any neighbour of p.

Then, in order to forget those processes that were previously reachable from p through q (when

q was a neighbour of p), the reachable set mreach[q] is reset. This is done by sending a message

to the local HBFD (line 11). On the other hand, when the event notified by VBDD is a new

reconnection of q, that is q is no more suspected to be unreachable from p, q is removed from

out (procedure remove at lines 34–35).

Algorithm 3: Eventually Perfect Partition Detector EPPD
1 upon initialisation do
2 out← ∅ {processes suspected to be out of partition(p)}
3 mreach← {∅, ..., ∅} {mutually reachable sets}
4 prevHB[1..|Π|]← {0, ..., 0} {previous heartbeat counters}
5 prevDV [1..|Π|]← {0, ..., 0} {previous disconnection vector}
6 upon local_receive(VBDD,〈VBDD, dv〉) do
7 for all q ∈ Π : prevDV [q] < dv[q] do
8 if dv[q] mod 2 = 1 then {new disconnection}
9 call add(q)
10 else call remove(q) {new reconnection}
11 local_send(HBFD,〈EPPD, out〉)
12 endfor
13 prevDV ← dv
14 upon local_receive(HBFD,〈HBFD, HB, mreachable〉) do
15 mreach← mreachable {new mutually reachable sets}
16 for all q ∈ Π : q 6= p do
17 if HB[q]− prevHB[q] < 1 ∧ q /∈ out then {new failure suspicion}
18 call add(q)
19 local_send(HBFD,〈EPPD, out〉)
20 else if HB[q]− prevHB[q] ≥ 1 ∧ q ∈ out ∧ dv[p] mod 2 = 0 then {false suspicion}
21 call remove(q)
22 local_send(HBFD,〈EPPD, out〉)
23 endelseif
24 endfor
25 prevHB ← HB
26 procedure add(q)
27 out← out ∪ {q}
28 if q = p then out← Π \ {p} {local disconnection}
29 else {disconnection or failure of a remote process}
30 for all s ∈ Π : s ∈ mreach[q] ∧ s 6= q ∧ dv[s] mod 2 = 0 do
31 if @u ∈ Π : u 6= q ∧ dv[u] mod 2 = 0 ∧ s ∈ mreach[u] then out← out ∪ {s}
32 endfor
33 endelse
34 procedure remove(q)
35 out← out \ {q}

16

The last task (lines 14–25) monitors failure by examining both the heartbeat counters and

reachability sets provided by HBFD. For each process in Π, the difference between the values

of the new heartbeat counter HB and the old heartbeat counter prevHB is compared against

the failure detection threshold value 1. In the test of line 17, a failure suspicion of process q

detected at process p is new if (1) p suspects q (HB[q]−prevHB[q] < 1), and (2) q is not already

suspected (q /∈ out). In this case, process q and all the processes that became unreachable from p

due to the failure suspicion of q are added to out by the call of the procedure add. Contrariwise,

a false suspicion of process q detected at process p (line 20) is new if (1) p does not suspect

q (HB[q] − prevHB[q] ≥ 1), (2) q is already suspected (q ∈ out), and (3) p is not seen as

disconnected. In this case, q is removed from out by the call to the procedure remove (lines 34–

35).

Sketch of proof Strong partition completeness: There are 3 cases to consider: q is included

in out (1) either due to the disconnection detection of q, (2) or due to the failure suspicion

of q, (3) or even due to the partition suspicion of q following the disconnection or the failure

of another process r. In the first case, from the VBDD-completeness property, we know that

the corresponding disconnection event of q is eventually delivered by every correct process in

partition(p). Thus, all the correct processes in partition(q) execute the code block at lines 6–13,

and q is added to the set out. In the second case, from the HB-completeness property, we know

that the heartbeat counter of every process q /∈ partition(p) is eventually bounded. Thus, for

all the processes in partition(p), the condition at line 17 is eventually true and q is added to

the set out. The third case, the partition suspicion of q due to the disconnection detection or

the failure suspicion of another process r, is included in the previous cases. Process q is added

to the set out by the call of the procedure add(r) at lines 29–31.

Eventual strong partition accuracy: The proof is by contradiction. Assume a correct process

q ∈ partition(p) is permanently suspected by p, that is q ∈ out. From the HB-accuracy property,

we know that the heartbeat counter of every process in partition(p) is unbounded. In addition,

from the VBDD-accuracy property and since q ∈ partition(p), q is connected. Therefore, the

condition of the test at line 20 is eventually true and q is eventually removed from the set out

—a contradiction.

17

7 Related work

The failure detector presented in this paper is based on seminal work on heartbeat failure

detectors by Aguilera, Chen and Toueg [1, 2]. The distributed system model is the same and

is suitable for mobile ad hoc networks: A partially synchronous model, that is an asynchronous

model augmented with failure detection for partitionable networks. Even if not mentioned

in their papers, heartbeat failure detection algorithms are inherently convenient for tolerating

nodes mobility. We have added a neighbourhood detector that notifies topology changes of the

neighbourhood, and modified the transmission and the parsing of paths in heartbeat messages

in order to (1) let the heartbeat message return to the initiator even if the path includes a cycle

and to (2) build the set of processes reachable through neighbours.

In the literature, few unreliable failure detectors explicitly target mobile ad hoc networks.

In [6], the authors propose an adaptation of a gossip-based failure detector. Heartbeat messages

are logically stamped, and a vector clock is piggybacked in every heartbeat message. In order to

tolerate nodes mobility, the failure detector algorithm allows gaps of some heartbeats between

adjacent heartbeat arrivals. Contrary to our distributed model, the links are bidirectional.

In [9], an architecture for local failure detection that tolerates terminal mobility is presented

in the context of sensor networks. The distributed model assumes that every process uses

the same time unit. The mobility is said to be passive, that is nodes are not aware they are

moving and the network does not partition. In our work, the distributed model is weaker, but

assumes that each node is equipped with a neighbour detector. We do not build such neighbour

detector but claim that network protocols can provide such information. Furthermore, in [9],

the architecture is built around a local failure detector (correct processes eventually only suspect

processes in the local neighbourhood) and mobility detection layer. The local failure detection

is implemented using any 3P algorithm, not provided in the paper. The mobility detection

algorithm is a periodic gossip broadcasting computation with one initiator and with termination

detection.

Concerning disconnection detection, to the best of our knowledge, there is no deterministic

algorithm in the literature. Concerning partition detection, [3] discusses the property of a

failure detector for partitionable group communication systems, but the authors do not give

any implementation. Our partition detector is inspired by this specification. In addition,

contrary to [3], in our proposition, communication channels can be unidirectional. Finally, we

18

see our partition detector as the participant detector introduced in [4]: The set of participants

is the set of reachable processes and the consensus is re-launched when the partition changes.

Our neighbourhood detector conforms to the information accuracy property of the participant

detector. The second property, namely information inclusion, is not present in our proposition

because the set of potential participants Π is assumed to be known in our model.

8 Conclusion and future work

This paper has presented a derived version of a heartbeat failure detector in which the paths

of processes piggybacked in the heartbeat messages are also parsed to build a topology of

the network reachable through the neighbours. The failure detector tolerates the mobility

of the processes, and then topology changes. Since disconnections are frequent in mobile ad

hoc networks, and in order to make the distinction between failures and disconnections, the

paper has also introduced the concept of unreliable disconnection detection and has presented a

vector-based disconnection detector. Our disconnection detector take advantage of a quiescent

stubborn broadcast primitive to broadcast disconnection information whenever possible, that

is optimistically. The hints provided by the heartbeat failure detector and by the vector-based

disconnection detector are interpreted by an eventually perfect unreliable partition detector for

wireless systems subject to node and link crashes, and subject to nodes mobility. The partition

detector outputs for each process p a list of processes suspected to be unreachable, that is those

processes which are suspected of being in another partition than p’s one.

The first perspective to this work is the simulation of the protocols’ performance for mobile

ad hoc networks and the comparison with the results presented in [6]. A second perspective is

the design of a more elaborated distributed version of partition detection which adds semantic

rules to construct, over the correct processes of partition(p), a convergence on the following

three sets: (1) the set of processes suspected to be faulty by all the processes in partition(p),

(2) the set of processes seen as disconnected by all the processes in partition(p), and (3) the set

of processes suspected, by all the processes in partition(p), to be partitioned due to the failure

or the disconnection of another process. Another perspective is to use the partition detector for

establishing consensus for partitionable networks on a set of participants smaller than Π.

19

References

[1] M. Aguilera, W. Chen, and S. Toueg. Using the Heartbeat Failure Detector for Quiescent

Reliable Communication and Consensus in Partitionable Networks. Theoretical Computer

Science, 220(1):3–30, June 1999.

[2] M. Aguilera, W. Chen, and S. Toueg. On Quiescent Reliable Communication. SIAM

Journal of Computing, 29(6):2040–2073, Apr. 2000.

[3] Ö. Babaoǧlu, R. Davoli, and A. Montresor. Group Communication in Partitionable

Systems: Specification and Algorithms. IEEE Transactions on Software Engineering,

27(4):308–336, Apr. 2001.

[4] D. Cavin, Y. Sasson, and A. Schiper. Reaching Agreement with Unknown Partici-

pants in Mobile Self-Organized Networks in Spite of Process Crashes. Technical Report

IC/2005/026, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2005.

[5] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed Systems.

Journal of the ACM, 43(2):225–267, Mar. 1996.

[6] R. Friedman and G. Tcharny. Evaluating Failure Detection in Mobile Ad-Hoc Networks.

International Journal of Wireless and Mobile Computing, 1(8), 2005.

[7] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn Communication Channels. Technical

Report TR97, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997.

[8] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming.

Springer-Verlag, 2006.

[9] N. Sridhar. Decentralized Local Failure Detection in Dynamic Distributed Systems. In

Proc. 25th IEEE Symposium on Reliable Distributed Systems, pages 143–154, Leeds (UK),

Oct. 2006.

[10] L. Temal and D. Conan. Failure, connectivity, and disconnection detectors. In Proc.

1st French-speaking Conference on Mobility and Ubiquity Computing, volume 64 of ACM

International Conference Proceeding Series, pages 90–97, Nice, France, June 2004.

20

