
A Pro-Active Middleware Platform for Mobile Environments
Denis Conan, Chantal Taconet, Dhouha Ayed, Lydialle Chateigner, Nabil Kouici, and Guy Bernard

GET / INT, CNRS Samovar
9 rue Charles Fourier, 91011 Évry, France

{Denis.Conan,Chantal.Taconet,Dhouha.Ayed,Lydialle.Chateigner,Nabil.Kouici,Guy.Bernard}@int-evry.fr

ABSTRACT
With wireless communications and mobile hand-held de-
vices becoming a reality, new applications where users
can have access to information anytime, anywhere are
made possible. To design a middleware-based platform
for applications such as emergency aid, crisis manage-
ments, our approach is threefold. We design and imple-
ment a middleware platform that hides as much as possi-
ble the details of the hardware, the operating system, and
the telecommunication protocols from application devel-
opers and users. Then, we define a context manager as-
sociated with a middleware manager that cope with the
collaboration between the users and the other middle-
ware services. Next, users and the other middleware ser-
vices rely on context information: the former for express-
ing needs and behaviour, the latter for being pro-active.
These middleware services include disconnection man-
agement, fault management, deployment.

KEY WORDS
Proactiveness, mobile environment, context-awareness,
disconnection management, fault tolerance, deployment.

1 Introduction

Since the early 90’s, the field of mobile computing has
witnessed tremendous research and technological ad-
vances. With wireless communications and mobile hand-
held or wearable devices becoming a reality, new applica-
tions where users can have access to information anytime,
anywhere are made possible. In the future IT society, mo-
bility will be the rule and no longer the exception. The
emergence of the new field of pervasive computing as a
successor to both distributed systems and mobile comput-
ing enforces this vision: environments will be “saturated
with computing and communication capability, yet grace-
fully integrated with human users” [1]. Right now, mo-
bile handheld devices such as Personal Digital Assistants
(PDA) are attracting great attention. However, software
capacities of mobile handheld devices are rather modest,
the connectivity to services via the Internet is limited and
the number of available services is very low compared
to the possibilities of home and personal computers con-
nected to the Internet via wired links.

The AMPROS project [2] is motivated by the en-
abling and enhancement of wireless communication. The

objectives of the project include research, development,
and prototyping of a middleware-based platform in wire-
less networks with the generalisations that can be used
for services such as, emergency aid, crisis managements.
The platform must address the challenges of interoper-
ability, scalability, dynamics, and mobility in communi-
cating environments.

The adaptation to the characteristics of mobile com-
puting can be performed by the application (laissez-
faire strategy), by the system (transparent strategy), or
by both the application and the system (collaboration
strategy)[3]. As surveyed in [4], there is much work deal-
ing with mobile information access that demonstrates that
the laissez-faire and the transparent approaches are not
adequate. Our collaboration approach is then threefold.
We design and implement a middleware platform that
hides as much as possible the details of the hardware, the
operating system, and the telecommunication protocols
from application developers and users. Then, we define a
context manager associated with a middleware manager
that cope with the collaboration between the users and the
other entities of the middleware. Next, users and middle-
ware services rely on context information: the former for
expressing needs and behaviour, the latter for being pro-
active. These middleware services include disconnection
management, fault management, deployment.

The structure of the paper is the following. Sec-
tion 2 gives the rationale for the different services mak-
ing up the platform. Then, Section 3 presents the big
picture of the architecture of the platform. The follow-
ing sections succintly sketch the detailed architecture of
the main services: Section 4, 5, 6, and 7 for context
management, disconnection management, fault manage-
ment, and deployment, respectively. Finally, Section 8
compares our approach with related research work, and
finally, conclusions and future work are drawn in Sec-
tion 9.

2 Motivations and objectives

The AMPROS platform may be dedicated to emergency
applications with a great number of participants (rescue
workers, patients...) which need to coordinate them-
selves. AMPROS applications are supported by multi-
network technologies and especially by tetra network. It
must allows proactiveness of both the platform and the



applications. The extra-functional requirements elicited
in the AMPROS project include context awareness for
allowing the platform to be aware of its environment in
order to achieve a better proactivity ; disconnection man-
agement for allowing to continue the execution of dis-
tributed applications even in case of disconnection ; fault
tolerance and group management for enabling distributed
applications to behave in a well defined manner once fault
occurs while collaboration between dynamic groups of
persons occurs ; deployment of multi-component appli-
cations for minimizing the software necessary on each
terminal and allowing adaptation of the software to the
current context.

In proactive computing, the system adapts itself
without any user interaction. This is enabled because the
system collects information about its execution context.
Context awareness is enabled by different mechanisms
which allow to collect information and to react to con-
text changes. Context awareness includes several level
of awareness: Network awareness (e.g., bandwidth avail-
ability), resource awareness (e.g., terminal capabilities),
environment awareness (e.g., geographical location), and
finally user-related awareness (e.g., current users activ-
ity). All these different kinds of contexts may be relevant
to the system, to the middleware, or to the application.
Context awareness allows to modify their respective be-
haviour.

Mobile applications must keep working even while
being weakly connected or disconnected. Weak connec-
tivity means intermittent communication, low-bandwidth
or high-latency [5]. We distinguish between two kinds
of disconnections: Voluntary disconnections when the
user decides to work on their own to save battery life
or communication costs, or when radio transmissions are
prohibited (as aboard a plane); and involuntary discon-
nections due to physical wireless communication break-
downs such as in an uncovered area or when the user has
moved out of the reach of a base station. However, the
need to continue to work in a mobile environment raises
the problem of data availability in the presence of dis-
connections. Thus, to offer this continuity, the applica-
tion and the system should be reactive to mobile envi-
ronment changes. Service continuity while being discon-
nected implies the creation of disconnected components
before loosing connectivity.

Distributed applications must be able to behave in a
well-defined manner once faults occur. A complete fault
tolerance solution is not drawn in the following solution,
but only some of the fundamental paradigms such as con-
nection and failure detection. The distributed application
relies on two middleware primitives to reach a common
decision, which depends on the initial inputs proposed by
the distributed entities, despite crash failures.

Another part of proactiveness is taken into account
by the discovery of available resources. We call resources
all the entities that may be discovered. This includes
users (they may be seen by the system as resources), com-

puters, software components at different stages (software
component packages that may be discovered in order to
be downloaded, or instantiated software components that
are resources which offer services). An application is
made up of several distributed components and there are
several kinds of terminals used. The applications soft-
ware is installed just in time on the terminals (when it is
necessary). This feature is important to achieve proactiv-
ity since it allows to install software suited to the execu-
tion context.

3 Architecture

Figure 1 presents a layered architecture of our plat-
form. The higher level components represent application-
specific components. The left lower-level components
are the entities already provided by the operating sys-
tem and the available middleware. In the area sur-
rounded by a dotted line, are depicted the middleware
entities specific to our platform. In the rest of the paper,
Section 4 details resource monitoring, context manage-
ment, monitoring/simultation, middleware management
and multi-network managment. Then, Section 6 presents
disconnection management, and logging and reconcilia-
tion. Section 6 details failure detection and group man-
agement. Finally, Section 7 develops proactive trading
and deployment management.

etc

Monitoring
Resource

Mngt
Context

Trading
Pro−Active

Simulation
Monitoring/

Mngt
Multi−net.

Deployment Management

Device Device

Component Disconnected Component

Middleware Management

Middleware Common Services
(naming, trading, notification, persistency...)

Middleware core (ORB...)

Operating System

Mngt
Group

Detector
Failure

Reconcil.
Logging/Discon.

Mngt

Figure 1. Acrhitecture of the plaform.

4 Context management

The context management service is a rather generic ser-
vice, which is required to support other middleware ser-
vices. The behaviour of applications or middleware ser-
vices is influenced by a number of resources (e.g., battery
state, network bandwidth, geographical location). We
name context a valuation of this set of resources. The
context management service is structured in a layered



manner, as in [6]. Now, we describe the role of each layer
from bottom to top (see Figure 2).

Middleware Common Services
(naming, trading, notification, persistency...)

Middleware core (ORB...)

Operating System

...

g
et co

n
fig

 / set co
n

fig

Recognition
Context

Service

Monitor
Resource

query / subscribe

Discon.
Mngt Detection

Failure

Application

Mngt
Multi−net.

Manager
Context

Policy
Appl/Users

Profiles
Appl/Users

Device Device

Application

Middleware Management

Figure 2. Context management architecture.

4.1 Resource monitoring

There is one Resource Monitor (RM) for each type of
resource. A RM is responsible for getting the current
value of the associated resource. The value is obtained
from a “driver” (in the broad sense: e.g., a network driver
for monitoring the current bandwidth, or a pseudo-driver
for getting the available memory or the CPU utilisation).
RMs can include some system- or device-dependent
code. They get raw data and process them, if needed, in
order to provide system-independent low-level context
data (e.g., the average bandwidth value during the last
minute). Periodically, RMs push low-level context
data to the Context Recognition Service, for instance
Device:Network:WiFi:Bandwidth = 30, or
Location:Coordinates = {80.0, 140.3}.
Low-level context data are hierchically organised, as
in [6].

4.2 Context recognition service

The Context Recognition Service (CRS) gathers low-
level context data from RMs and provides the
appropriate high-level context data, as considered
by applications/users profiles, to the context man-
ager. For instance, a profile containing the declara-
tions Device:Network:*:Bandwidth and Loca-
tion:Coordinates denotes the interest of the appli-
cation (or the user) in monitoring bandwidth and location.

4.3 Context manager

Policies describe the interest of individual appli-
cations, or users, or else the middleware itself,
to be notified whenever significant changes in

the context state occur, for instance if (De-
vice:Network:*:Bandwidth < 10 && De-
vice:Processor > 25) then ‘‘enable
compression’’. It is the responsibility of the Context
Manager (CM) to notify the appropriate entity (appli-
cation, user, or middleware) when significant changes
occur: e.g. notify ‘‘middleware’’, ‘‘en-
able compression’’, or notify ‘‘user’’,
‘‘battery low’’.

5 Disconnection management

In this section, we describe the role of the architecture
of the disconnection management, and the logging and
reconciliation (see Figure 3). Disconnection management
is based on the Domint prototype [7, 8], and logging and
reconciliation uses transformation functions [9].

Local Operation
Manager

Update Manager

Queue
Manager

Broadcast
Manager

Timestamp
Manager

Local
Connectivity

Detector
<<WiFi>>

Local
Connectivity

Detector
<<Battery>>

Connectivity
Detector

Battery MonitorWiFi Monitor

Disconnected
Component

Manager

Logging Service
Reconciliation
Service

Connectivity Detection Service

Disconnected
Component
Service

Middleware Core

Operating System

Middleware Services

Figure 3. Disconnection management service.

5.1 Connectivity management

The Connectivity Detector (CD) monitors the availability
level of local resources: e.g., bandwidth, memory, bat-
tery, by creating a Local Connectivity Detector (LCD) per
local resource. LCDs use data provided by the context
recognition service for connectivity management. Each
LCD uses an hysteresis mechanism for smoothing vari-
ations in resource availability to determine the connec-
tivity mode: Connected, partially connected, and discon-
nected. The role of CD is to gather LCDs data and to
provide a “global” conectivity view.

The Disconnected Components Manager (DCM)
centralises the control of all the Disconnected Compo-
nents (DC) in the cache of the mobile terminal. The cache
is shared between all the applications running on the mo-
bile terminal so as to avoid having several copies of the
same DC. DCs have the same structure as the remote
components: Data and code similar to the remote com-
ponents ones. When DCs are instantiated in the mobile
terminal, their states equal the remote ones. In the con-
nected mode, requests are sent directly to remote compo-
nents. In the partially connected mode, requests are sent



to disconnected components that forward them to remote
components. In the disconnected mode, requests are sent
solely to disconnected components.

5.2 Logging and reconciliation

The logging and reconciliation is based on SAMS [10]
and transformation functions [11] and adapted for the
component-oriented systems.

The logging management service is responsible for
managing operations executed when disconnected. This
service comprises the Local Operations Manager (LOM)
and the Update Manager (UM). While being discon-
nected or partially connected, operations called on remote
components are redirected to local DCs and logged in
LOM. While becoming connected, UM is responsible for
flushing the log, and for updating the state of DCs with
calls performed by the corresponding remote component
while being disconnected.

Each terminal owns a reconciliation service in order
to maintain the coherence between DCs and their corre-
sponding component. This service comprises three enti-
ties. The Broadcast Manager (BM) manages all the com-
munications between servers and clients. The Timestamp
Manager (TM) is a sequencer giving tickets in order to
serialise calls. The Queue Manager (QM) stores all the
operations of all users in different queues.

6 Fault Management

The distributed system is asynchronous: There is no
bound on message delay, clock drift, or the time to ex-
ecute a step. Hosts can fail by crashing —i.e., by prema-
turely halting. The fault tolerance is masking [12], stating
that users do not experiment the failure, except the ones
using the physical display of the failed hosts. Figure 4
depicts the architecture of the fault management.

Consensus
Manager

Disconnection
Detector

Connectivity
Detector

...Resource

Monitor

Resource

Monitor

Resource

Monitor

Failure 
Detector

Group
Manager

Figure 4. Fault management service

In case of crash failures of some nodes, the Failure
Detector (FD) transparently detects theses failures in or-
der to activate a (rollback or roll-forward) recovery of the
application. FD implements an unreliable failure detector

of the class �S with strong completness and weal accu-
racy [13]. FD is built on top of a connectivity detector
in order to leverage the failure detection by not sending
heartbeat messages to disconnected hosts.

On top of the connectivity detector, the Discon-
nection Manager DM provides a global view of discon-
nections by implementing a distributed algorithm full-
filing the disconnection properties [14] of strong com-
pletness —i.e., eventually every process that disconnects
is permanently seen disconnected by every connected
process— and strong accuracy —i.e., no process is seen
disconnected before being really disconnected.

The Group Manager (GM) is able to provide the
list of co-operating members of the same application, and
the hosts where the co-operating members reside. Then,
the members of the group can work collaboratively, for
instance via consensus. The GM subscribes and unsub-
scribes group members to FD. GM is responsible for de-
termining coherent views of the set of members (includ-
ing faulty and disconnected hosts) that participate to the
distributed application.

The Consensus Manager ()CM tolerates remote
hosts failures and disconnections by excluding faulty
hosts and disconnected hosts from the current consensus.
Disconnected entities can reintegrate only after a recon-
ciliation.

7 Deployment Management

Software deployment is the complex process that cov-
ers all the activities performed after the development of
a software system. These activities include configuring,
releasing, installing, updating, reconfiguring and even de-
installing a software system [15].

Context awareness plays a significant role in the de-
ployment. It permits to automatically install and recon-
figure a software system on the consumer site depending
on users needs and preferences, and environmental con-
straints.

Let us take the case of two users, one using a lap-
top and another one using a PDA who want to deploy the
same application. The context-aware deployment solu-
tion installs for the former user a version comprising a
normal graphical interface and for the latter one a version
with a small graphical interface appropriate to the screen
size of the PDA. In addition, if the resources of the PDA
are too scarce to install the whole software, only some
parts of the applications are installed on the PDA, and the
others are installed on other servers belonging to the pro-
ducer site. The whole procedure is transparent to the user
and performed automatically.

In this Section, we propose a solution for making
context-aware deployment of multi-component applica-
tions whose components may be distributed on different
machines [16]. The architecture is depicted in Figure 5.



Manager
Context

Proactive 
Trader 

Proactive 
Trader 

Level
Application

Level
 AMPROS

Middleware
Services

Level

Executor
Deployer

Downloader Executor
Deployer

Downloader

Pre 
Deployer<<new>>

Deployment
Context
Adaptor

Terminal (one computer)

<<new>> <<new>> <<new>>

Deployment Provider

Repository

Package

Repository

Assembly

Repository

Context

Figure 5. Deployment Platform

7.1 Repositories

The deployment architecture is composed of three kinds
of repositories. Firstly, the Package Repository contains
ready-to-be-deployed software component packages of
the applications. A software component package consti-
tutes the deployment unit. It contains one or several im-
plementations of a component. Each implementation is
dedicated to a computer type or a particular execution en-
vironment. Secondly, the Assembly Repository comprises
abstract assembly descriptors of the applications. An as-
sembly descriptor describes an application architecture
(structure) —i.e. the applications’ components instances
with their respective types and the connections between
them. Thirdly, the Context Repository is composed of
deployment context descriptors. A deployment context
descriptor describes the context to which the deployment
is sensitive and the rules for adapting the deployment to
the context.

7.2 Context-aware deployers

A set of execution servers provide an execution environ-
ment for instantiating components of an application. If
the user terminal is too loaded or has limited resources,
some parts of the applications are to be executed on these
execution servers.

The following three types of entities are not
application-specific. The Pre-Deployer (PD) component
initiates the deployment of the application. The De-
ployer Executor component performs different deploy-
ment activities such as instanciating components, config-
uring them, de-installing them and connecting two com-
ponents. The Downloader component allows to place
component implementation code on a local site. Each
execution server has a preinstalled downloader.

The Deployment Context Adaptor (DCA) is specific
to the deployment of a given application. It is conse-
quently dynamically deployed during the deployment of
the application by the PD component. It subscribes to

particular event types of the ContextManager to collect
different values of particular contexts according to the
rules described in the deployment context descriptor. The
DCA component analyses relevant contexts identified by
the ContextManager and decides which application as-
sembly to deploy by choosing adequate implementations
and where to deploy them.

7.3 Deployment related services

The platform is supported by an ORB and needs a proac-
tive trader which offers the possibility to store trading re-
quests and to notify importers as soon as new services are
available, and a notification service to notify relevant con-
texts and new registered services to their subscribers. To
be able to deploy an application, the user terminal has to
support middleware services and context aware elements
described in Section 4. The user terminal must have pre-
installed downloader and deployer executor components,
and an interface listing the applications to deploy.

8 Related work

Context awareness is a very rich research area. We can
cite two projects which consider middleware support for
context-aware applications. RCSM [17] provides an In-
terface Definition Language which generates the code
that allows the middleware to trigger application actions.
CARISMA [18], through a reflexive API, allows an appli-
cation to reconfigure the middleware according to context
changes. The architecture we propose allows configura-
tion and reconfigurations, of both applications and mid-
dleware. A context manager, tuned by applications, users,
and middleware profiles, is at the heart of our architecture
and is completed by other elements.

In a mobile distributed application, the distribution
of different application entities can be done in fixed ter-
minals [19, 20, 21], or in fixed and mobile terminals [22].
In the first case, the client’s GUI in the mobile terminal
uses the code in the server part. In the second case, a mo-
bile terminal can be a client for servers and can be a server
for other hosts (mobile or fixed). This last case was rarely
studied in mobile environments for two reasons: Firstly,
the limited capacity of mobile terminals (memory, CPU,
battery...) like mobile phones and PDA ; secondly, the
difficulty of implementing these applications with tradi-
tional programming models. In this article, we demon-
strate that the component paradigm makes it possible to
have entities (components) which offer (server role) and
use (client role) services. In addition, the previous so-
lutions don’t separate the functional and extra-functional
aspects ; this is also provided in our platform by the adop-
tion of the component-based paradigm.

Concerning fault management, this is the first
proposition allowing to take into account disconnections
in failure detection, group management and consensus.



This is an important feature since disconnections are no
longer the exception but the rule, and then must be dealt
with.

Deployment management is included in our archi-
tecture. Indeed, deployment of an application is the first
step in which context awareness may be taken into ac-
count [23], especially if the deployment is made just in
time —i.e. when a user starts the application. We think
that it is important to disminish the work of application
developers for deploying their applications. We argue
that some context reconfigurations may be driven by the
middleware itself without many application-specific de-
scription. For instance, this is mostly the case for discon-
nection management and multi-network management.

Finally, the discovery service has an important place
in our architecture. Since the discovery servic allows to
discover available services as soon as they are available,
it is one of the means to react to mobility changes. Fur-
thermore, it permits to find the most suitable resources
according to a given context.

9 Conclusion

In this paper, we presented a proactive middleware plat-
form dedicated to emergency applications running in the
context of mobile environments. We introduced the ba-
sic blocks of the architecture. Since most of the extra-
functional services present in the platform cannot be
transparent, the first and more innovative entity is the
context manager which is central for the collaboration
between the applications/users and the platform. Exam-
ples of contexts may include but are not limited to net-
work information (e.g., bandwidth availability), resource
information (e.g., terminal capabilities), environment in-
formation (e.g., geographical location), and user-related
information (e.g., current users activity). Contexts are
provided for the managemenent of the connectivity and
the deployment. The configuration and the reconfigura-
tion are controlled by a middleware manager. The user is
able to keep working while being disconnected and can
launch applications not already installed on the terminal.

We currently have first prototypes of the disconnec-
tion management and the deployment management. Spe-
cific algorithms for failure detection and consensus toler-
ating disconnections have been designed. Future work is
then to continue the integration of these blocks through
the context and middleware managers.

References

[1] M. Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communications, August 2001.

[2] AMPROS Home Page. http://www-inf.int-
evry/AMPROS, 2003.

[3] M. Satyanarayanan. Fundamental Challenges in Mobile Comput-
ing. In Proc 15th Symposium on Principles of Distributed Com-
puting, pages 1–7, 1996.

[4] J. Jing, A. Helal, and A. Elmagarmid. Client-Server Computing
in Mobile Environments. ACM Computing Surveys, 31(2), 1999.

[5] L.B. Mummert. Exploiting Weak Connectivity in a Distributed
File System. PhD thesis, Carnegie Mellon, USA, September 1996.

[6] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm.
Managing Context Information in Mobile Devices. IEEE Perva-
sive Computing, july-september 2003.

[7] D. Conan, S. Chabridon, O. Villin, G. Bernard, A. Kotchanov,
and T. Saridakis. Handling Network Roaming and Long Discon-
nections at Middleware Level. In Proc. Workshop on Software
Infrastructures for Component-Based applications on Consumer
Devices, Lausanne, Switzerland, September 2002.

[8] N. Kouici, D. Conan, and G. Bernard. Disconnected Metadata
for Distributed Applications In Mobile Environments. In Interna-
tional Conference on Parallel and Distributed Processing Tech-
niques and Applications, Las Vegas, Nevada, USA, June 2003.

[9] L. Chateigner, S. Chabridon, and G. Bernard. Intergiciel pour
l’informatique nomade: rplication optimiste et rconciliation. In
MAnifestation des JEunes Chercheurs en STIC, MAJECSTIC,
Marseille (France), October 2003.

[10] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. SAMS: Syn-
chronous, Asynchronous, Multi-Synchronous Environments. In
17th International Conference on Computer Supported Coopera-
tive Work in Design, Rio de Janeiro (Brazil), September 2002.

[11] A. Imine, P. Molli, G. Oster, and M. Rusinowitch. Development
of Transformation Functions Assisted by a Theorem Prover. In
CSCW, New Orlns (USA), November 2002.

[12] F.C. Gärtner. Fundamentals of Fault-Tolerant Distributed Com-
puting in Asynchronous Environments. 31(1):1–26, March 1999.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure De-
tectors for Reliable Distributed Systems. 43(2), March 1996.

[14] L. Temal. Disconnection Management and Failure Detec-
tion. Master’s thesis, University of Versailles Saint-Quentin-En-
Yveline, Institut National des Tlcommunications, vry (France),
September 2003.

[15] R.S. Hall, D.M. Heimbeigner, A. van der Hoek, and A.L. Wolf.
An architecture for Post-Development Configuration Manage-
ment in a Wide-Area Network. The International Conference on
Distributed Computing Systems, May 1997.

[16] D. Ayed, C. Taconet, and G. Bernard. Context-Aware Deploy-
ment of multi-component applications. In Pro. 5th Generative
Programming and Component Engineering (GPCE03) Young Re-
searchers Workshop, September.

[17] S.S. Yau, F. Karim, Y. Wang, B. Wang, and S. Gu pta. Reconfig-
urable Context-Sensitive Middleware for Pervas ive Computing.
IEEE Pervasive Computing, joint special issue with IEEE Per-
sonal Communications, 1(3), July-September 2002.

[18] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-
Aware Reflective mIddleware System for Mobile Applications.
IEEE Transactions on Software Engineering, November 2003.

[19] M. Satyanarayanan. Mobile Information Access. IEEE Personal
Communications, 3(1), 1996.

[20] B. D. Noble and M. Satyanarayanan. Experience with Adaptive
Mobile Applications in Odyssey. Mobile Networks and Applica-
tions, 4(4):245–254, 1999.

[21] A.D. Joseph, J.A. Tauber, and M.F. Kaashoek. Mobile computing
with the Rover toolkit. ACM Transactions on Computers, 46(3),
1997.

[22] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spre-
itzer, and C.H. Hauser. Managing Update Conflicts in Bayou: A
Weakly connected Replicated Storage System. Proc 15th Sympo-
sium on Operating Systems Principles, 1995.

[23] C. Taconet, E. Putrycz, and G. Bernard. Context Aware Deploy-
ment for Mobile Users. In Proceedings of the 27th International
Conference on Computer Software and Applications Conference
(COMPSAC 2003), Dallas, Texas, November 2003.


