Rollback Recovery of PVM Applications *

Denis Conan, Pierre Taponot and Guy Bernard

Institut National des Télécommunications
9 rue Charles Fourier 91011 EVRY Cedex France
Fax: +33-1-60 76 47 80

e-mail: conan@int-evry.fr

Abstract

PVM: Parallel Virtual Machine [Geist94] is a software system that permits a
heterogeneous collection of Unix computers networked together to be viewed
by a user’s program as a single parallel computer. PVM uses the message
passing model to allow programmers to exploit distributed computing. Unfor-
tunately, PVM does not tolerate computer crashes.

In this paper, we show how rollback recovery can be simply added to PVM
in order that PVM applications survive computer crashes. For this, a mecha-
nism developed at the I.N.T. is used [Bernard94]. The fault tolerance software
checkpoints all tasks, logs interprocess messages and recovers the virtual ma-
chine by rollbacking a minimum of processes.

We obtain a solution that is simple thanks to a new feature introduced in the
version 3.3 of PVM: the scheduler also called the resource manager. The solu-
tion is very efficient because the fault tolerance software permits asynchronous
checkpointing and message logging and only minor modifications are inserted
in the source code of PVM daemons.

Keywords
Distributed system, distributed computing, PVM, fault tolerance, rollback recovery.

*Accepted to the Romanian Open Systems Event (ROSE '95), Bucharest, Romania, 1-4
November 1995.

1 Introduction

Networks of workstations become more and more widespread computing en-
vironments, in particular because of their attractive performance/cost ratio.
In such an environment, migrating from centralized applications (executing on
one machine) to distributed applications (executing simultaneously on several
machines of the network) is a natural evolution. However, several problems
arise due to the distribution. Among them are the management by program-
mers of numerous distributed units and the sensitivity of distributed applica-
tions to machine failures. The PVM: Parallel Virtual Machine [Geist94] is an
already famous answer to the first problem just cited and rollback recovery
[Strom85, Borg89, Johnson90, Elnozahy92, Conan, Sens95] implementing pas-
sive replication is the cheapest solution ever found to the second one.

In the paper, we consider a network of workstations running a Unix oper-
ating system. Our computation model of a distributed application consists in
several processes running in parallel on different machines, with communication
links between them. PVM makes a collection of computers appear as one large
virtual machine. It transparently handles all message routing and task schedul-
ing. With the programming interface, the user writes his/her application as a
collection of cooperating tasks. Tasks access PVM resources through a library
of interface routines. These routines allow the initiation and the termination of
tasks as well as communication and synchronization between tasks. Communi-
cation and synchronization constructs include those for sending and receiving
data structures as well as high-level primitives such as broadcast and barrier
synchronization.

PVM introduces two kinds of processes: daemons and tasks. One PVM
daemon noted pvmd runs on each computer of the virtual machine. The pvmd
serves as a message router and controller. The first pvmd (started by hand)
is designated the master, while the others (started by the master) are called
slaves. User processes started by the master or by a slave are registered as
tasks in the virtual machine. More complex tasks were introduced in version
3.3: for instance, resource managers also called schedulers. A scheduler is a
PVM task responsible for making task and daemon placement decisions. There
are already simple schedulers embedded in pvmds. For the sake of simplicity,
complex tasks other than the schedulers are not considered in this study.

Several methods can be used to provide fault tolerance in distributed sys-
tems. Using a specialized hardware may be efficient, but such a component
cannot be easily added to existing systems. Application-specific methods and
atomic transactions require the use of a particular programming model (per-
haps incompatible with the message passing paradigm). Active replication is
well suited for real time systems but requires the use of extra processors.

We propose to handle machine failures using checkpointing, message logging
and rollback-recovery. When a machine failure is detected, a replacement ma-
chine is found in the network. Practically, a checkpointing algorithm registers
from time to time the state of the distributed application and a recovery al-
gorithm restarts the distributed application from a previous state in case of a
machine failure. To our knowledge, only one technical report presents a fault
tolerant PVM: it is the work of Leon et al. at Carnegie Mellon University
[Ledn93]. In their solution, almost every entity of the virtual machine must
rollback in case of a single machine failure. Here, we propose a better solution
built from the new concept of the scheduler. For a first study, we don’t treat
the failure of the machine where the master and the scheduler run.

This paper is organized as follows. Section 2 demonstrates that the scheduler
is necessary to adding rollback recovery to PVM. Section 3 develops scheduler’s
actions during the recovery. Section 4 details modifications inserted in the
PVM’s source code. Section 5 compares the proposed solution with related
works. Section 6 concludes and gives the direction of ongoing works at the
IN.T.

2 Why it’s necessary to add a scheduler to PVM

First, we have to determine precisely which entities compose the distributed
application that the fault tolerance software has to take into account. A first
naive answer will be all the virtual machine - i.e. pvimds and user’s tasks. But,
rollback recovery using message logging only supports deterministic processes
in the sense that, if two processes start in the same state, execute the same
portion of code and both receive the identical sequence of inputs, they will
produce the identical sequence of outputs and will finish in the same state. In
PVM, pvinds communicate with one another through UDP sockets and because
UDP is an unreliable delivery service which can lose, duplicate or change the
order of delivery of packets, an acknowledgment and retry mechanism is used.
So, the latter uses timers and makes the execution of pvids not deterministic.
Therefore, the fault tolerance software cannot support pvmds, i.e. every pvmd
belongs to the outside world of the fault tolerant distributed application and is
not fault tolerant.

The question is then which user’s entities could manage PVM resources
after the crash of the master - i.e. which fault-free entities manage the virtual
machine’s configuration. The configuration depends on the initial configuration
described in user’s hostfile configuration file and that the user can also change
the configuration interactively. Thus, the configuration has to be maintained
by user’s tasks. These tasks are the schedulers. Note that the schedulers are
included in the set of fault tolerant processes.

So, we program a generic - i.e., application independent - scheduler. For the
sake of simplicity, we limit the number of active schedulers in the virtual machine
to one and thus don’t allow more than one process to register as a scheduler.
Practically, the user starts the master and immediately after the scheduler on
the same computer. As a matter of course, the scheduler running on the master
host manages any slave pvinds that don’t have their own schedulers, i.e. all the
virtual machine.

The scheduler consists in an infinite loop that successively accepts a request
and then changes the configuration of the virtual machine. Every user’s request
is automatically redirected towards the scheduler. It is then the responsibility
of the scheduler to treat the request’s arguments, call the right PVM routines
and control the evolution of the virtual machine.

3 The scheduler during the recovery

During fault-free execution, the fault tolerance software transparently check-
points the distributed application and logs inter-task messages. During the re-
covery, the scheduler is responsible for managing the configuration of the virtual
machine. Thus, the scheduler and the fault tolerance software interact. Here,
we detail the scheduler’s actions during the recovery. For more information on
the fault tolerance software, see [Bernard94, Conan95].

The first stage of the recovery is the detection of crashes. When a machine
crashes, the daemon running on this host is down. Another pvind trying to
communicate with the first will detect the failure through his triggered timeouts.
When a slave pvmd has detected a shutdown, it takes two actions: inform the
master of the failure and erase all the messages in transit towards the failed
host. When the master has detected a shutdown, it informs all the slaves and
the scheduler of the failure and erases all the messages in transit towards the
failed host. Moreover, each pvind sends a keep-alive message to remote pvmds
once in a while. So, the failure is detected in finite time.

Because the fault tolerance is transparent to the user, the “notification” mes-
sages provided by PVM as means to implement fault recovery in an application
are not sent to the tasks.

Following the detection of the failure, the fault tolerance software must stop
the sending of interprocess messages for all the entities of the distributed appli-
cation. The objective is to avoid in-transit messages that will become orphan
after rollbacking *[Conan, Conan95]. As there is no explicit coordination be-

*The fault tolerance software doesn’t avoid orphan messages but minimizes their number
and rollbacks orphan processes due to orphan messages.

tween PVM and the fault tolerance software and in order to minimize the num-
ber of orphan messages, pvinds now stop inter-task messages too. The master
sends a “stop” message to every pvind and each pvind stops reading tasks’ file
descriptors, except for the scheduler that must keep managing the configuration
of the virtual machine

The first stage ends when the fault tolerance software is sure that there is no
more in-transit message and when it has calculated the maximum recoverable
consistent global state of the distributed application [Conan95].

The second stage is the reconfiguration of the distributed application. The
fault tolerance software transmits the list of failed pvmds and the list of failed
or orphan tasks to the scheduler ¥ The scheduler creates new incarnations of
failed or orphan tasks and if necessary new pvmds.

The change in the configuration of the virtual machine necessitates a change
in the routing table because the new incarnations have new task identifiers and
pvimds only know old ones. We solve this problem by inserting a table that
does the mapping between old and new task identifiers. For sending a message
a task always uses the old identifier, for routing a message a pvind uses the new
identifier and before delivering a message to a task a pvind replaces the new
task identifier with the old one. The scheduler broadcasts the map to all pvmds
and at last transmits the new configuration to the fault tolerance software.

Finally, the fault tolerance software restarts the distributed application and
informs the scheduler. The scheduler broadcasts a “restart” message to all
pvinds, all pvmds start again reading tasks’ file descriptors and the execution
is resumed.

4 Modifications of the PVM’s source code

The modifications of the PVM’s source code fall into three points: the adding
of new PVM message tags for the recovery protocol, the management of a table
for the mapping between old and new task identifiers and the management of a
lock for the stopping of inter-task communication.

We add three protocols controlled by the scheduler: one for broadcasting
the new mapping table and two for setting and unsetting the inter-task com-
munication lock. This represents six new message tags.

tThe scheduler can still communicate because the semantic of transmission of the messages
it is going to send is “no constraint”. See [Brzezinski95, Conan95, Conan] for explanations
on the semantic of transmission of messages

{The fault tolerance software had been informed beforehand that the scheduler is respon-
sible for the configuration of the virtual machine, so of the distributed application.

The management of the mapping table necessitates a list of two-dimensional
structures, two static variables and three functions: for loading the new mapping
table, for returning the new identifier, for returning the old one. The first
function corresponds to a new protocol and then to a new message tag. The two
following ones are called before routing inter-task messages and before delivering
inter-task messages to the receiving task, respectively.

The management of the inter-task communication lock necessitates one static
variable and three functions: for setting the lock, for unsetting it and for testing
it. The first two functions correspond to two new protocols and to two new
message tags. The last one is called each time the daemon “works”. Recall that
the master keeps reading the file descriptor of the scheduler.

Practically, 177 lines of C code are inserted in the source code of PVM and
the scheduler is coded in less than 2000 lines of C code §

5 Discussion

In [Ledn93], authors implement rollback recovery inside PVM. They make
the best of synchronization routines supplied by the PVM library. For check-
pointing a distributed application, they stop all tasks with a “barrier” so that
the system is quiescent ; in particular, messages in transit must be flushed
from the communication medium. The difficulty is here to determine when the
virtual machine is quiescent, this because of the “wait contexts” T When the
virtual machine is stopped, pvinds give tasks permission to save their state and
then proceed to checkpoint their own state. So, they take globally coordinated
checkpoints. Because inter-task messages aren’t logged, when a crash occurs, all
tasks must rollback to the state corresponding to the last consistent checkpoint.
In our solution, checkpointing is not controlled by PVM and doesn’t involve
pvimds, it can be coordinated or not, global (all tasks) or not. In short, the user
chooses the fault tolerance of his application. In case of a machine failure, only
failed and orphan tasks and failed pvmds must rollback.

The fact of keeping some tasks running while others rollback impose a change
in the routing. In PVM, the routing is translated in names, i.e. the location
of a task is included in his identifier. This problem is also encountered when
migrating a task. In the PVM literature, different solutions were proposed for
the migration problem.

$For the placement of tasks the scheduler has the same algorithm than the master.
ISee PVM’s documentation to know what is a wait context.

In [Casas94, Casas95], only the migrating tasks and tasks connected to them
by direct TCP connections are involved in the migration process. Direct TCP
connections are closed and instead of going through these connections new mes-
sages will follow the indirect route through pvmds. Authors have designed a
complex message forwarding system with home and hint maps between old and
newer locations of tasks that have migrated. It is much more complex and more
expensive than ours. The advantage of their solution is that a migration doesn’t
involve all the tasks of the virtual machine, so it scales better.

In [Stellner94, Stellner95], consistent checkpointing of PVM applications is
implemented outside the pvmds. A scheduler sends a signal and a message to
each task. Each task disconnects itself from the PVM system, checkpoints and
then rejoins PVM getting a new task identifier. This task identifier is sent to
the scheduler which sets up a mapping table. The task waits for the receiving
of the new mapping table before restarting.

In [Song95], authors add a new daemon called mpvmd to each pymd. mpvmd
is responsible for maintaining a mapping table. The migration mechanism is
implemented by a set of library routines on top of PVM, i.e. communication
routines of the standard library are replaced by new routines that check by
mpvmd if the identifier of the receiving task has changed. The migration call is
a blocking call and don’t return until all copies of the table are updated.

Because we need to modify pvmds (in order to lock inter-task communication
and avoid “notification” messages), it seems to us easier and more efficient to
insert the mapping table in pvimds. A last issue that isn’t studied very often is
scalability. Clearly, the solutions which frequently utilize broadcast primitives
don’t scale at all, this is more or less the case for all the solutions except for the
one developed in [Casas95].

6 Conclusion and future work

We have enhanced PVM so that PVM applications tolerate machine failures,
except from the one where the master and the scheduler are running. The
solution comprises a scheduler that replaces the master for the control of the
well behavior of the virtual machine and that cooperates with the fault tolerance
software for the rollback recovery in case of crashes. The modifications of the
PVM’s source code are simple and scarce. Checkpointing is either consistent or
independent and rollback recovery doesn’t need to be global.

A prototype not including checkpointing and message logging has been im-
plemented and tested. The fault tolerance software presented in the paper
[Bernard94] is fully portable and then introduces a very high cost in interprocess
communication. If we add this fault tolerance software under PVM, there would

be two levels of indirection between a user’s task and the kernel, i.e. an inter-
task message has to cross PVM and the fault tolerance software. So, we decided
not to test and evaluate the fault tolerant PVM with this version but prefer im-
plementing a new software above the Chorus micro-kernel [Rozier92]. The fault
tolerance software is going to be integrated as a server into the Chorus/MiX
subsystem, i.e. into the kernel. We are now preparing this new prototype.

Finally, the fault tolerance software is designed for local area networks. It can
scale to large networks but large networks are then seen like a set of local area
networks, each of them running an instance of the fault tolerance software. Thus,
more work needs to be done for determining if there would be one scheduler per
local area network or one scheduler that would manage one cluster of tasks per
local area network.

References

[Bernard94] G. Bernard and D. Conan. Flexible Checkpointing and Efficient
Rollback-Recovery for Distributed Computing. In Proc. SUUG
"94 Conference, Moscou (Russie), April 1994.

[Borg89] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.
Fault Tolerance Under UNIX. ACM Transactions on Computer
Systems, 7(1), February 1989.

[Brzezinski9s] J. Brzezinski, J.-M. Helary, and M. Raynal. Semantics of recov-
ery lines for backward recovery in distributed systems. Publi-
cation Interne PI-899, Institut de Recherche en Informatique et
Systémes Aléatoires, Rennes (France), Février 1995.

[Casas94)] J. Casas, R. Konuru, S.W. Otto, R. Prouty, and J. Walpole.
Adaptative Load Migration systems for PVM. In Proc. of Su-
percomputing '94, Washington (USA), November 1994.

[Casas95] J. Casas, D. Clark, R. Konuru, S.W. Otto, R. Prouty, and
J. Walpole. MPVM: A Migration Transparent Version of PVM.
Technical Report 95-002, Department of Computer Science and
Engineering, Oregon Graduate Institute of Science & Technol-

ogy, Portland (USA), February 1995.

[Conan] D. Conan. Tolérance aux fautes dans les systémes répartis : la
reprise sur fautes par retour en arriére. Submitted to publication.

[Conan95] D. Conan. Un mécanisme global simple, souple et efficace et ses
extensions. Rapport interne,; Institut National des Télécommu-
nications, Evry (France), Juillet 1995.

[Elnozahy92]

[Geist94]

[Johnson90]

[Leén93]

[Rozier92]

[Sens95]

[Song95]

[Stellner94]

[Stellner95]

[Strom85]

E.N. Elnozahy and W. Zwaenepoel. Manetho : Transparent
Rollback-Recovery with Low Overhead, Limited Rollback and
Fast Output Commit. IEEE Transactions on Computers, 41(5),
May 1992.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. PVM: Parallel Virtual Machine - A User’s Guide
and Tutorial for Networked Parallel Computing. The MIT Press,
Cambridge, Massachusetts (USA), 1994.

D.B. Johnson and W. Zwaenepoel. Recovery in Distributed
Systems Using Optimistic Message Logging and Checkpointing.
Journal of Algorithms, 11, September 1990.

J. Ledon, A.L. Ficher, and P. Steenkiste. Fail-safe PVM: A
portable package for distributed programming with transparent
recovery. Technical Report CMU-CS-93-124, Carnegie Mellon
University, February 1993.

M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,
M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. Léonard,
and W. Neuhauser. Overview of the Chorus Distributed Operat-
ing System. In Proc. USENIX Workshop on Micro-Kernels and
Other Kernel Architectures, Seattle (USA), April 1992.

P. Sens. The Performance of Independent Checkpointing in Dis-
tributed Systems. In 3rd ACM Hawaui International Conference
on System Sciences, Hawaii (USA), 1995.

J. Song, H.K. Choo, and K.M. Lee. Application-Level Load Mi-
gration and Its Implementation on Top of PVM. Technical re-
port, National Supercomputing Research Center, National Uni-
versity of Singapore, Singapore, January 1995.

G. Stellner. Consistent Checkpointing of PVM Applications. In
Proc. 1st EuroPVM User’s Group Meeting, Roma (Ttaly), 1994.

G. Stellner and J. Pruyne. Resource Management and Check-
pointing for PVM. In Proc. 2nd FuroPVM User’s Group Meet-
ing, Lyon (France), 1995.

R.E. Strom and S.A. Yemini. Optimistic Recovery in Distributed
Systems. ACM Transactions on Computer Systems, 3(3), August
1985.

