Making Distributed Applications Fault-Tolerant
in Networks of UNIX Workstations'

Guy Bernard and Denis Conan
Institut National des Télécommunications

9 rue Charles Fourier 91011 EVRY Cedex France
Phone: 4+33-1-60 76 45 67 Fax: +33-1-60 76 47 80 e-mail: bernard@int-evry.fr

Abstract

This paper addresses the problem of fault tolerant
distributed computing in networks of UNIX worksta-
tions, where distributed applications consist in several
processes running on several workstations in parallel,
with communication links between them. We consider
software fault tolerance achieved by transferring tasks
from a workstation that fails to a replacement work-
station. We discuss how checkpointing and rollback re-
covery can be used for this purpose. We show how one
can rely on the characteristics of networks of UNIX
workstations for designing a flexible checkpointing al-
gorithm and an efficient recovery algorithm. The fault
tolerance software is fully portable, because it can be
implemented entirely outside of the kernel. Moreover,
fault tolerance is transparent to application program-
mers, who just have to use some predefined commu-
nication primitives for describing message exchanges
between processes of distributed applications.

! Accepted to the Italian Unix Users Conference, Milano, Italy, May 1993.



1 Introduction

Networks of workstations become more and more widespread computing environ-
ments, in particular because of their attractive performance/cost ratio. In such an
environment, migrating from centralized applications (executing on one machine) to
distributed applications (executing simultaneously on several machines of the net-
work) is a natural evolution. However, when the number of machines executing an
application increases, the application becomes more sensitive to machine failures,
since the program can fail entirely if a single machine executing a part of it fails.
Moreover, distributed applications are typically long run, so if the program fails, a
lot of work (hours or days) can be lost. Fault tolerance, allowing distributed appli-
cations to survive machine failures, is thus an important challenge in the process of
migrating from centralized to distributed computing.

Several methods can be used to provide fault tolerance in distributed systems.
Using a specialized hardware may be efficient, but such a component cannot be easily
added to existing systems. Application-specific methods and atomic transactions
require the use of a particular programming model by application programmers.
Active replication, such as ISIS [Birm87], are well suited for real time systems, but
require the use of extra processors for running the replicas of each program.

The goal of this paper is to investigate the possibility of designing and imple-
menting a portable software tool providing fault tolerance for distributed applica-
tions in a network of UNIX workstations. By “portable”, we mean that existing
distributed programs need not be modified in order to be fault tolerant, and that
the software tool should run entirely in user space, without requiring any modi-
fication of the UNIX kernel. Our work is close to the one of Johnson [John89],
who implemented a fault tolerance mechanism under the V distributed kernel. The
major differences are: (i) we put emphasis on portability, since our target operat-
ing system is UNIX; (4i) our algorithms take benefit from properties of network of
workstations.

The paper is structured as follows. In Section 2, we discuss how checkpointing
and recovery can be used to achieve fault tolerance. Design choices for a network of
UNIX workstations are presented in Section 3, and Section 4 describes the current
state of our prototype.

2 Checkpointing and Rollback Recovery

Our computation model of a distributed application consists in several processes
running in parallel on different machines, with communication links between some
processes. Machine failures are handled in the following way. When a machine
failure is detected, a replacement machine is found in the network, and the role
that played the failed machine in the distributed computation is transferred to the
replacement machine. The replacement machine may be one already involved in
the distributed application, but in general it will be a new one, since the number
of machines in a network of workstations is generally greater than the parallelism



degree of the distributed application. Fault tolerance is thus achieved by two com-
ponents, a checkpointing algorithm that registers from time to time the state of
the distributed application (or parts of this state), and a recovery algorithm that
restarts the application from a previous state in case of failure.

Checkpointing algorithms described in the literature divide into two classes:
synchronous and asynchronous. In synchronous algorithms, the processes involved
in a distributed application cooperate for taking their individual checkpoints. Co-
operation is achieved by the mean of control messages. Because of communications
delays, the collection of individual checkpoints may not be a consistent state of the
distributed application. Consistency means that “every message received must have
been previously sent” [Chan85], i.e. the reception of a message cannot be included
into the checkpoint of a process if the sending of the message is not already included
in the checkpoint of another process. Thus, a consistent state must also include the
set of messages that were sent before the checkpointing of a sending process but
not yet received when the checkpoint of the receiving process is taken. Examples of
synchronous checkpointing algorithms that constitute a consistent global state are
[Chan85] and [Koo87]. In asynchronous algorithms, processes can take their own
checkpoint when they decide so, and all interprocess messages are saved (“logged”)
in stable storage. Messages may be logged by the sending processes or by the receiv-
ing processes. No consistent global state is permanently maintained. However, the
set of individual local checkpoints and the set of logged messages constitute the raw
material that can be used to restart a distributed application in a consistent way
after a failure. Examples of asynchronous checkpointing algorithms are [John87],

[Stro88] and [Borg89].

Recovery algorithms involve restarting at least one process (the one(s) that was
(were) running on the machine that has failed), from its (their) last checkpoint, on
a replacement machine. However, other processes may be involved in the recovery.
Of course, since recovery makes use of information built by checkpointing, recovery
algorithms are not independent from checkpointing algorithms. With synchronous
checkpointing algorithms, a consistent global state is readily available. In this case,
synchronous recovery is appropriate: when a failure is detected, all processes are
stopped and the whole application restarts from the last consistent state [Koo87].
With asynchronous checkpointing algorithms, recovery can be asynchronous. A
restarting process resumes its execution from its last checkpoint, independently
from other processes, and logged messages are replayed (i.e., they are not resent
by some process, but their content is recovered from stable storage) when needed.
Other processes are aware of the recovery only if (and when) they must restart,
which occurs when a message that they sent to the failed machine was not acknowl-
edged, and thus could not be stored in stable storage as “sent and received”. An
example of asynchronous recovery algorithm is described in [Stro85]. However, since
asynchronous checkpointing algorithms register more information (messages) than
synchronous ones, synchronous recovery with asynchronous checkpointing is possi-
ble too [Stro91]. What is needed here is a centralized or distributed computation
for determining the set of processes that must restart from their last checkpoint in
order to preserve a consistent state.



3 Design Choices

As far as we know, only one complete implementation of fault tolerance software,
using checkpointing and recovery in a loosely coupled distributed system, has been
achieved [John89], but the implementation was done under the V distributed kernel.
This is why we decided to design, implement and evaluate a portable fault tolerance
tool for networks of UNIX workstations.

Networks of UNIX workstations present some properties: (i) the TCP protocol
achieves reliable and FIFO interprocess communication; (ii) a broadcast mechanism
is provided; (iii) machine failures are scarce and independent; (iv) a distributed
file system, such as NFS, is available; (v) local clocks may be (at least loosely)
synchronized; and (vi) when a file server fails, all processes running on workstations
pieces of code stored on that server can no longer run when page faults occur.

We have taken these properties into consideration for designing a portable fault
tolerance software tool. The last property implies that a file server involved in
a distributed application may be considered as reliable, since no fault tolerance
software running on workstations will ever be able to handle the impossibility of
running application code when the binary files can no longer be accessed if the
server crashes.

Assuming a file server is a reliable machine has important consequences in our
design. It makes possible to maintain on the server a global knowledge about the
state of distributed applications. This can be used for designing an efficient recovery
algorithm.

The checkpointing algorithm should be as lightweight as possible, for perfor-
mance reasons (it will be run several times during the execution of a distributed
application). On the other hand, the recovery algorithm may be more complex,
since machine failures are scarce: most of the time, it will never be run.

3.1 Checkpointing Algorithm

Synchronous checkpointing algorithms have two drawbacks: first, they may interrupt
a process at undesirable times (for instance, a process should not be interrupted in
the middle of a graphical display sequence); second, they involve a large number
of messages for synchronization purposes. Thus, we believe that an asynchronous
checkpointing algorithm is more appropriate.

Message logging is done by the sending process rather than by the receiving
process. The reason is that if message logging is done by the receiving process,
messages must be logged on a remote machine in order to be retrievable if the
receiving machine fails, involving extra communication costs. In our algorithm, the
content (i.e., the data field) of the messages sent after the last checkpoint is kept in
main memory on the sending machine until the next checkpoint, and the archives
of sending processes (i.e., sending sequence number, receiving sequence number and
receiving process identifier - not message data) are kept in main memory on the file
server machine. This is the scheme used in [Stro88], except that no disk access is



required for storing and retrieving the archives. When a process takes a checkpoint,
it can be taken for sure that the messages it received before the checkpoint will no
longer be requested if a failure occurs, and the corresponding data and archives can
be discarded from main memory of the sending workstation and of the server.

Checkpointing a process involves in fact two entities (see Section 4): the ap-
plication process itself, and the fault tolerance software, implemented as a daemon
process in user space. The application process itself takes its checkpoint strictly
speaking (i.e., its state), writes a checkpoint file on the server’s disk, and then re-
sumes its execution, while in parallel the daemon process completes the algorithm by
moving, from main memory of the workstation to the server’s disk, the logged mes-
sages. This way, the checkpointing delay as perceived by a distributed application
is minimal.

Moreover, if two processes are checkpointing simultaneously, the set of messages
that must be moved to the server’s disk can be reduced (since it can be known that
some messages will never be requested [Stro88]). This information can be used to
optimize message logging, by reducing both disk access time and communication
costs. Each process can know that a peer process is concurrently checkpointing
because we mark application messages sent during checkpointing (no explicit control
messages are needed). In fact, our checkpointing algorithm is flexible. Any process
can decide to checkpoint at any time, independently of other processes (in this case,
all messages in main memory are moved on the server’s disk if no other process is
currently checkpointing), or checkpoints can be loosely synchronized, as is proposed
in [Tong89]. For instance, a distributed application can be started with previsional
common checkpointing times for some or all workstations'. When it is “time to
checkpoint”, each daemon process invites local application processes to checkpoint,
and wait a (small) delay before moving the logged messages to the server’s disk,
with the hope that during this delay marked application messages will be received,
in which case the set of messages moved to the server will be reduced. In other
words, it is not necessary that all processes synchronize before local checkpointings
take place, but in case of simultaneity the algorithm is optimized.

3.2 Recovery Algorithm

The checkpointing algorithm registers (in publicly readable files) on the server’s disk
the state of the processes (checkpoints strictly speaking) and the messages that can
be requested after a failure. These informations can thus be retrieved from any
workstation in the network.

The main problem of asynchronous recovery is that cascading recoveries may
occur. An asynchronous recovery procedure begins with restarting one process alone.
During its execution, this process can discover that it must wait for another process
to restart too (for resending a message that was not logged), and so on. Thus,
the global recovery delay after a failure may be quite long. For instance, with ten
processes and one hour between checkpoints, it can be ten hours in the worst case.

! Assuming local clocks are approximatively synchronized by some utility, such as rdate(8).



In order to avoid cascading recoveries, our recovery algorithm is synchronous.
This assumes that global information about distributed application state is available.
With our checkpointing algorithm, there is a machine which centralizes this infor-
mation (the server). Thus, even though checkpointing is basically asynchronous, we
can design a synchronous recovery algorithm. It works in the following way. When
a failure occurs, the server is notified by the machine that detected the failure. The
server stops all running processes of the distributed application (i.e., interprocess
communications are inhibited, but local computation goes on). It then determines,
from information locally stored, (list of processes involved in a distributed appli-
cation, along with their communication links, the machines they are running on,
the file names of their last checkpoint, the file names of logged sent messages, and
message archives) the minimal set of processes that have to restart from their last
checkpoint (processes that were running on the machine that failed, and maybe some
others). The server then selects a replacement machine?, the appropriate commu-
nication links are reopened from this machine. Last, all processes involved in the
recovery restart simultaneously from their last checkpoint on a signal delivered by
the server. This way, the global recovery time is the longest of the individual process
recovery times, and not their sum, like it can be in asynchronous algorithms.

Requested messages are retrieved either from main memory of workstations or
from the server’s disk (their location is known from information contained in the
archives), rather than being resent by application processes themselves that would
have restarted from their own checkpoint. This has two advantages. First, unuseful
restarts are avoided. An extra process must restart only when the failure occurred
between a message sending and the update of the corresponding archive on the
server. Second, the same messages are received in the same order by the process
that was running before the failure and by the process that restarts on a replacement
machine, thus the re-execution is equivalent (i.e., gives the same results) to the old
one.

4 Current State and Implementation Details

The checkpointing and recovery algorithms have been implemented in a network on
Sun4 workstations running SunOS 4.1. The starting point was a set of communica-
tion primitives for distributed computing and the corresponding runtime [Bern89].
The runtime has been modified in order to include fault tolerance software.

On every workstation runs a daemon process in user space. This daemon acts
as an intermediary between application processes for their communication. When
an application process has a message to send to another application process, the
message is first passed to the daemon process that performs the appropriate tasks
related to fault tolerance (message numbering, message storage in main memory,
archive update on the server, failure detection, recovery). On the receiving side,
messages are buffered by the daemon until being requested by application processes.

2Several algorithms have been designed for finding a suitable workstation (e.g, [Bern91]).



Communication between daemons are based on the TCP protocol. Machine failures
are detected by loss of TCP connections. A special daemon process runs on the file
server, for achieving archive management and recovery.

User programs are written in a standard programming language (such as C) and
use a set of predefined primitives for communication between remote parts of the
distributed application. These primitives are implemented in a library that handles
the internal communication with the local daemon. So, application programmers
have just to link their source module with the library, without having to worry about
fault tolerance aspects.

A mechanism that was designed for checkpointing process state for the purpose
of process migration [Alar92] is used for checkpointing application process state. It
runs out of the kernel. Thus, the whole fault tolerance software (daemon process
code, checkpointing code, communication primitives) is fully portable on standard

(Berkeley) UNIX systems.

The prototype is now in operation. We are currently evaluating the cost of fault
tolerance (overhead in interprocess communications, checkpointing delay, recovery
delay) on real distributed applications. Further work is also needed for correctly
handling input/output from/to the external world (e.g., writing a data record on a
tape should not be repeated if the writer process is restarted after a failure).

5 Conclusion

We have designed and implemented a software fault tolerance mechanism for dis-
tributed computing in a network of UNIX workstations. This mechanism runs en-
tirely in user space and requires no modification to the standard UNIX kernel, thus
is fully portable on any network of UNIX workstations. Fault tolerance is trans-
parent to the application programmer, who simply uses high-level primitives for
describing message exchanges between remote parts of a distributed application.
Our checkpointing algorithm is flexible, since it can be used in an asynchronous way
or in a fully or partially synchronous way, and efficient because checkpointing is
done in parallel by two UNIX processes. Our recovery algorithm minimizes the set
of processes that must restart after a failure and recovery duration is optimal. This
is possible because global information is centralized on a single machine that can
be considered as reliable: a file server. Both checkpointing and recovery algorithms
rely on the existence of a network file system, which permits access to permanent
data from any workstation.

It should be noted that our tool may be used for other purposes than fault toler-
ance. If workstations are dedicated to a user, this one may require the full availability
of his/her workstation for doing some intensive computation. In this case, all foreign
processes involved in a distributed application and running on his/her workstation
can be moved on another workstation, as if a failure occurred.



References

[Alar92]

[Bern89]

[Bern91]

[Birm87]

[Borg89]

[Chan85]

[John87]

[John89]

[Koo87]

[Stro85]

[Stro88]

[Stro9l]

[Tong89]

E. Alard and G. Bernard. Preemptive Process Migration in Networks of
UNIX Workstations. In Proc. 7th International Symposium on Computer
and Information Sciences, Antalya (Turkey), 2-4 November 1992.

G. Bernard, A. Duda, Y. Haddad, and G. Harrus. Primitives for Dis-
tributed Computing in a Heterogeneous Local Area Network Environment.

IEEE Transactions on Software Engineering, SE-15(12), December 1989.

G. Bernard and M. Simatic. A Decentralized and Efficient Algorithm for
Networks of Workstations. In Proc. FurOpen Spring 91, Tromso (Nor-
way), 20-24 May 1991.

K.P. Birman and T.A Joseph. Exploiting Virtual Synchrony in Distributed

Systems. In Proc. 11th ACM Symposium on Operating Systems Principles,
Austin (USA), November 1987.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault
Tolerance Under UNIX. ACM Transactions on Computer Systems, 7(1),
February 1989.

K.M. Chandy and L. Lamport. Distributed Snapshots: Determining
Global States od Distributed Systems. ACM Transactions on Computer
Systems, 3(1), February 1985.

D.B. Johnson and W. Zwaenepoel. Sender-based Message Logging. In
Proc. 17th IEEFE Symposium on Fault Tolerant Computing, June 1987.

D.B. Johnson. Distributed System Fault Tolerance Using Message Logging
and Checkpointing. PhD thesis, Rice University, December 1989.

R. Koo and S. Toueg. Checkpointing and Rollback Recovery for Dis-
tributed Systems. IEEE Transactions on Software Engineering, SE-13(1),
January 1987.

R.E. Strom and S.A. Yemini. Optimistic Recovery in Distributed Systems.
ACM Transactions on Computer Systems, 3(3), August 1985.

R.E. Strom, D.F. Bacon, and S.A. Yemini. Volatile Logging in n-Fault-
Tolerant Distributed Systems. In Proc. 18th IEEE Symposium on Fault
Tolerant Computing, June 1988.

R.E. Strom, A.P. Goldberg, A. Gopal, and A. Lowri. Restoring Consistent
Global States of Distributed Computations. Workshop on Parallel and
Distributed Debugging, ACM SIGPLAN Notices, 26(12), December 1991.

Z. Tong, R.Y. Kain, and W.T. Tsai. A Low Overhead Checkpointing and
Rollback Recovery Scheme for Distributed Recovery. In Proc. §th IEEE
Symposium on Reliable Distributed Systems, 1989.



